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Abstract. It is known that secret keys can be extracted from some
USIM cards using Correlation Power Analysis (CPA). In this paper, we
demonstrate a more advanced attack on USIMs, based on deep learning.
We show that a Convolutional Neural Network (CNN) trained on one
USIM can recover the key from another USIM using at most 20 traces
(four traces on average). Previous CPA attacks on USIM cards required
high-quality oscilloscopes for power trace acquisition, an order of mag-
nitude more traces from the victim card, and expert-level skills from the
attacker. Now the attack can be mounted with a $1000 budget and basic
skills in side-channel analysis.
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1 Introduction

Today the Universal Subscriber Identity Module (USIM) card is perceived as an
enabler for security, privacy, and trust in services and applications provided by
the mobile communication networks. The USIM card is the only platform which
is used to secure network access in Universal Mobile Telecommunications Service
(UMTS) and Long-Term Evolution (LTE) cellular networks and it remains an
essential part of New Radio (NG) cellular networks [23]. If the USIM’s secret
key is compromised, the attacker can decrypt the subscriber’s communication,
impersonate the subscriber, or impersonate the network.

SIM cards were introduced in 2G GSM systems in 1996 to address shortcom-
ings discovered in previous analog systems and to meet emerging threats [14].
In particular, risk of fraud (making calls charged to other subscribers) was con-
sidered a major problem. The SIM enabled a subscriber’s authentication using
a pre-shared secret key stored in the SIM and, consequently, a correct charging.

However, the algorithm COMP-128, which implements a subscriber’s authen-
tication (A3) and session key generation (A8) functions defined by GSM stan-
dard [15], was soon broken. Originally confidential, the first version of COMP-128
was published in 1998 [18] and the second and the third in 2013 [24]. All three
versions are based on a compression function which has a weakness in diffusion
of the second round. This allows for a “narrow pipe” attack which can recover

? Supported by the research grant No 2018-04482 from the Swedish Research Council.



2 M. Brisfors, S. Forsmark, E. Dubrova

the secret key from the SIM from 131K challenge-response pairs [13]. An im-
proved attack which can recover the key from 20K challenge-response pairs was
presented at DEFCON 2004 [16].

To improve security, USIM cards were launched in 3G UMTS systems in 2001.
In particular, procedures for mutual authentication of the subscriber and the core
network based on the Authentication and Key Agreement (AKA) protocol were
introduced. The mutual authentication was intended to mitigate threats of rogue
radio base stations.

The main structure of a USIM-based access authentication remains intact in
4G and 5G. The 4G LTE standard uses the same mutual authentication scheme
as UMTS. The latest 5G NG standard uses a hardened version, called 5G-AKA,
as one of its mandatory authentication options [1, 21].

The 3rd Generation Partnership Project (3GPP) recommends implementing
the authentication and key generation functions of AKA using either MILE-
NAGE based on AES [2], or TUAK based on SHA3 [3]. In this paper we focus
on attacks on MILENAGE algorithm.

Previous work. Implementations of MILENAGE in some commercial USIM
cards are known to be vulnerable to Correlation Power Analysis (CPA) [10,17].
In [10], eight commercial USIM cards were analyzed. It was shown that it is
possible to recover the secret key as well as other secret parameters required
to clone the USIM card using 200 to 1000 power traces from the target USIM,
depending on USIM’s type. In [10], 9 commercial USIM cards were analyzed and
one was found vulnerable. The secret key was recovered using 4000 power traces.

Our contribution. We demonstrate the first attack on the implementation of
MILENAGE in a commercial USIM card based on deep learning-based power
analysis. The deep learning-based power analysis has three important advan-
tages over CPA:

1. It requires an order of magnitude fewer traces from a victim USIM card.

2. It can bypass some countermeasures, e.g. jitter [7] and masking [12], and
thus break some USIMs which cannot be broken by CPA.

3. It does not require expert-level skills in side-channel analysis (if a trained
neural network and all scripts for the attack stage are available).

In addition, we believe that we are the first to break a commercial USIM using
equipment with the total cost below $1000 (excluding PC). In a combination with
(3), the latter makes the presented attack particularly threatening.

2 USIM Security

In this section, we describe key terms related to cellular networks and USIM
cards, AKA protocol and MILENAGE algorithm.

We use the terms 2G, 3G, 4G and 5G to refer to the corresponding genera-
tions of the 3GPP defined systems. We typically use the terminology of 4G.
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Fig. 1. The AKA protocol.

2.1 Network Structure

A mobile network consists of the following three essential types of entities:

– Mobile Entity (ME) equipped with a USIM.
– An authenticator in the serving network, called the Mobility Management

Entity (MME).
– A database in the home network storing the subscriber credentials, called

the Home Subscriber Server (HSS).

The USIM contains all necessary information about the subscription at the
home network, including an International Mobile Subscriber Identity (IMSI).
The USIM also stores a long-term key K which is pre-shared with the HSS. All
cryptographic operations which involve K are carried out within the USIM.

The home network and the serving network are usually connected over a
secure channel, such as IPsec or Transport Layer Security (TLS).

2.2 Authentication and Key Agreement Protocol

The 3GPP AKA is a challenge-response multi-party protocol based on symmetric
key cryptography. The main steps are (see Fig. 1) [5]:

1. The MME initiates AKA by sending a request for an Authentication Vector
(AV) associated with a particular subscriber in the HSS.

2. The HSS responds with an AV consisting of the 4-tuple (RAND, AUTN,
XRES, KASME ), where RAND is a random value, AUTN is a network au-
thentication token, XRES is the expected response from the ME and KASME

is the session key which is established in the ME and MME when the AKA
run is completed. The AUTN, XRES and KASME are derived from the RAND
and K. As an intermediate step in the derivation of KASME, the cipher key
CK and integrity key IK are produced.

3. When the MME gets the AV, it initiates the authentication procedure with
the ME by forwarding the RAND and AUTN.
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Fig. 2. The MILENAGE algorithm.

4. The ME sends the RAND and AUTN to the USIM, which verifies the au-
thenticity and freshness of the AUTN parameter. If the verification succeeds,
the USIM derives a response parameter RES and keys CK and IK from K,
RAND and AUTN.

5. The USIM forwards the RES, CK and IK to the ME.
6. The ME derives KASME from the CK and IK and sends RES to the MME.
7. The MME verifies that RES is equal to XRES. If the verification is successful,

MME accepts the authentication. Otherwise it rejects the authentication.

AKA uses 48-bit sequence numbers to prove the freshness of the RAND
and AUTN parameters to the ME and USIM. The sequence number SQN is
included in the AUTN parameter. If the sequence number is old, the ME or USIM
rejects the authentication. AKA also includes a re-synchronization mechanism
for sequence numbers.

The AKA protocol described above is a 4G AKA. Mutual authentication
scheme of 3G AKA is the same. The 3G AKA and 4G AKA differ in the key
agreement part. In 3G, the keys CK and IK are used to protect traffic, while in
LTE they are used to derive a tree of keys. 2G systems can also use 3G AKA.

In 5G-AKA, the response RES computed in step 4 is processed one more
time through a key derivation function (HMAC-SHA256) depending on RES,
RAND, and CK || IK. The rest of the mutual authentication scheme is similar.

2.3 MILENAGE Algorithm

The 3GPP MILENAGE algorithm [2, 4], implements seven security functions
related to authentication and key agreement: f1, f

∗
1 , f2, f3, f4, f5, f

∗
5 . The block

diagram of the MILENAGE is shown in Fig. 2.
The functions f1 and f∗1 compute a 64-bit, 128-bit or 256-bit network au-

thentication code MAC-A and resynchronisation authentication code MAC-S,
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respectively. The function f2 generates a 128-bit RES. The functions f3 com-
putes a 128-bit or 256-bit cipher key CK and integrity key IK, respectively. The
functions f5 and f∗5 generate a 48-bit anonymity key AK. AK is used to derive
the sequence number SK.

The block denoted by EK represents a 128-bit block cipher keyed with 128-bit
or 256-bit key K. 3GPP recommends AES for implementing the block cipher.

The OP is an Operator Variant Algorithm Configuration Field defined by an
operator and used for all subscribers. The OPC is computed from OP and K as
shown in the box at the top right corner of Fig. 2. There two alternative options
for computing OPC on the USIM which, in turn, determine where OP is stored:

– OPC is computed off the USIM during the USIM pre-personalization process
and stored on the USIM. In this case OP is not stored on the USIM.

– OPC is computed on the USIM each time it is required in the algorithm. In
this case OP is stored on the USIM.

A 128-bit random challenge RAND and a 16-bit Authentication Management
Field AMF are controlled by the home network. A 48-bit sequence numbers SQN
is a shared counter which is incremented with each successful authentication, to
protect against replay attacks.

The parameters r1, r2, r3, r4, r5 are integers in the range 0 - 127 which defines
amounts by which intermediate variables are cyclically rotated. The parameters
c1, c2, c3, c4, c5 are 128-bit constants which are XORed with intermediate vari-
ables. Default values for r1 − r5 and c1 − c5 are set in the specification, however
an operator may select different values for these constants to customize the al-
gorithm further.

3 Attacking MILENAGE

3.1 Measurement Setup

Our measurement setup is shown in Fig. 3. It consists of the ChipWhisperer-
Lite board, the CW308 UFO board and a custom smartcard reader for the
ChipWhisperer called LEIA.

The ChipWhisperer is a hardware security evaluation toolkit based on a low-
cost open hardware platform and an open source software [19]. It can be used
to measure power consumption with a maximum sampling rate of 105 MS/sec.

The CW308 UFO board is a generic platform for evaluating multiple tar-
gets [9]. The target board is plugged into a dedicated U connector.

LEIA is the ISO7816 interface smart card reader compatible with the Chip-
Whisperer [11]. The reader is implemented on a STM32 microcontroller. It con-
trols the clock and I/O lines to the smartcard under test and provides a trigger
output to command the ChipWhisperer to start an acquisition. The reader has
a resistor placed between the load and ground to enable voltage measuring.

The open source software [8] is run on a PC to control the hardware and
execute the MILENAGE algorithm. The PC plays the role of MME. To initiate
the authentication, the PC communicates with the USIM using the commands
in Application Protocol Data Unit (APDU) language.



6 M. Brisfors, S. Forsmark, E. Dubrova

Fig. 3. Equipment for trace acquisition.

3.2 Attack Target

We used the commercial Sysmocom USIM cards sysmoSIM-SJS1 [25] as an at-
tack target. These cards are compliant with 2G GSM, 3G UMTS and 4G LTE
standards and can be used with any core network. The 2G SIM authentication
algorithm is set to COMP128v1 and the 3G/UMTS authentication algorithm to
MILENAGE [25]. All cards ship with a factory-default, card-individual random
K and OPC. However, the cards are fully re-programmable and the user can
re-program K, OP or OPC.

Sysmocom USIM cards were one of the target cards in the CPA attack pre-
sented in [10]. The CPA attack presented in [10] used 4000 power traces to
recover the key from a Sysmocom USIM card.

3.3 Trace Acquisition

In order to find a time interval containing the attack points, we used a high-end
LeCroy oscilloscope with the maximum sampling rate 10 GS/sec and 1 GHz
bandwidth per channel. If only low-cost equipment such as ChipWhisperer-Lite
is available, the same result can be achieved by capturing at a lower sampling
rate and shifting the offset until the distinct shape of AES encryption is found.

To capture a single trace, the following three steps are repeated in the script
for trace acquisition:

1. Select a random RAND 16-byte value.
2. Call MILENAGE algorithm with the RAND as seed. This turns on a trigger

signal which stays high until a response is received.
3. Capture and save the power trace as well as RAND.

Fig. 4 shows a full power trace of USIM card for one call of MILENAGE.
Fig. 5 presents a zoomed interval of the trace in which seven AES encryptions
can be clearly distinguished. Note that MILENAGE calls the encryption Ek only
six times (see Fig. 2). However Ek is also used to compute OPC (see the box at
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Fig. 4. Power trace from a USIM card for one authentication call.

Fig. 5. Zoomed interval of the trace in Fig.4 representing the MILENAGE execution.

the top right corner of Fig. 2). Even if OPC is programmed into the USIM, it
might by possible that the USIM performs the OPC computation step anyway
and then discards the result.

Since is was not clear whether the MILENAGE algorithm starts at the first
or at the second AES encryption, we applied CPA to both time intervals. The
CPA successfully recovered the key from 300 traces corresponding to the second
AES encryption and failed on the first AES encryption. From this we concluded
that the MILENAGE algorithm starts at the second AES encryption1.

ChipWhisperer is well-known for its ability to perfectly synchronize traces.
However, traces captured by ChipWhisperer in our experiments were desyn-
chronized. Since ChipWhisperer controls LEIA and LEIA controls the USIM,
when ChipWhisperer sends a command to the USIM to start MILENAGE,
the command has to be forwarded by LEIA. The forwarding may cause de-
synchronization.

Previous work on deep learning side-channel attacks on AES [22] has shown
that desynchronized traces may be used directly if a CNN model is used for the
attack. It is also possible to synchronize the traces before training and testing,
regardless of the model’s type. In our experiments we tried both approaches.

1 In previous CPA attack on Sysmocom USIM cards [10] it was suggested that MILE-
NAGE starts at the first AES encryption, but our results indicate otherwise.
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Fig. 6. Power trace representing the first round of AES (within 6KPt - 19KPt).

Fig. 7. Correlation results for the 10th byte of OPC⊕ K.

3.4 Recovering Key from Profiling USIM by CPA

To train a deep learning model, we need a profiling USIM with known parameters
K, OPC, r1 − r5 and c1 − c5, The target USIMs in our experiments use default
values for the constants r1− r5 and c1− c5

2. They are also re-programmable, so
we could simply re-write factory-default K and OPC by new values. However,
our focus is on extracting the factory-default K and OPC in order to estimate
the number of traces required for a successful CPA attack on this type of card.
Below we describe our CPA attack based on the Hamming weight power model.

We can see from Fig. 2 that, at the first step of MILENAGE, RAND ⊕ OPC is
computed and then the result is encrypted. If AES-128 is used for implementing
the encryption EK, the 128-bit key K can be recovered as follows:

1. Use a USIM to execute MILENAGE for a large number of random chal-
lenges RAND0, . . . , RANDn−1 and capture the resulting power traces T =
{T0, . . . , Tn−1} as described in Section 3.3.

2. First, recover OPC⊕ K by a CPA with the S-box output in the first round
of AES as the attack point.

3. Second, recover the first round key, RK1 by a CPA with the S-box output
in the second round of AES as the attack point.

4. Using the key expansion algorithm of AES-128, deduce K from RK1.
5. Compute OPC as OPC = (OPC ⊕ K) ⊕ K.

2 If a USIM uses non-default values for r1 − r5 and c1 − c5, they can be derived using
the technique presented in [17].
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A similar two-step strategy for recovering K and OPC was used in the CPA
attacks on MILENAGE presented in [10, 17]. Next we describe the process of
recovering OPC⊕ K in more details.

Fig. 6 shows a power trace representing the execution of the first round of
AES. The four operations SubBytes(), ShiftRows(), MixColumns() and
AddRoundKey() are executed approximately between the points 6KPt and
19KPt.

Let RANDj,k denote the kth byte of RANDj , k ∈ {0, . . . , 15}, j ∈ {0, . . . , n−
1}. For each RANDj and each possible value v ∈ {0, . . . , 255} of the kth byte
of OPC⊕ K, the power estimate xj,v for the trace Tj ∈ T and the guess v is
calculated as the Hamming weight of the S-box output in the first round:

xj,v = HW(S-box[RANDj,k ⊕ v]).

Let yj,i denote the data point i in the trace Tj ∈ T , for j ∈ {0, . . . , n − 1},
i ∈ {0, . . . ,m − 1}, where m is the number of data points in the trace. For the
trace in Fig. 6, m = 24.4K (buffer size of ChipWhisperer-Lite).

To check how well the HW model and measured traces correlate for each
guess v and data point i, Pearson correlation coefficients, rv,i, for the data sets
{x1,v, ..., xn,v} and {y1,i, ..., yn,i} are computed:

rv,i =

∑n−1
j=0 (xj,v − x̄v)(yj,i − ȳi)√∑n−1

j=0 (xj,v − x̄v)2
∑n−1

j=0 (yj,i − ȳi)2
,

where n is the sample size, and x̄v = 1
n

∑n−1
j=0 xj,v and ȳi = 1

n

∑n−1
j=0 yj,i are the

sample means.
In our experiments, the maximum correlation coefficients for different bytes

of OPC⊕ K ranged in the interval 0.2758 - 0.4208. Fig. 7 shows correlation results
for the 10th byte of OPC⊕ K. One can clearly see distinct peaks.

Once all bytes of OPC⊕K are recovered, we can estimate the number of traces
required for a successful attack using the Partial Guessing Entropy (PGE) [20].
When the PGEs of all bytes reach zero, the OPC⊕ K is recovered. From Fig. 8,
we can see that about 300 traces are required to recover the key in this attack.

The process of recovering RK1 by a CPA with the S-box output in the second
round AES as an attack point is similar. The power estimate xj,v for the trace
Tj ∈ T , for j ∈ {0, . . . , n − 1}, and each RK1 subkey guess v ∈ {0, . . . , 255} is
calculated as the Hamming weight of the S-box output in the second round for
the input statej,k⊕v, where statej,k is the kth byte of the AES state statej after
ShiftRows() and MixColumns() in the first round for the challenge RANDj .
Note that RK1 can only be recovered after all bytes of OPC⊕ K are recovered
because only then can ShiftRows() and MixColumns() be fully evaluated.
This is necessary for determining the input to the second round.

3.5 Profiling Stage

At the profiling stage, the models CNN1,k and CNN2,k for recovering the bytes
of OPC⊕ K and RK1, respectively, are trained for all k ∈ {0, . . . , 15} as follows:
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Fig. 8. Partial guessing entropy vs. number of traces.

1. Identify the start of MILENAGE execution in the trace of the profiling USIM
(see Fig. 4 and 5). Set the offset for capture so that traces include the
computation of S-box in the first round of AES.

2. Use the profiling USIM to execute MILENAGE for a large number np of
random challenges RAND0, . . . , RANDnp−1 and capture the resulting set of
traces Tp,1 = {T0, . . . , Tnp−1}. Let m be the number of data points in each
trace Tj ∈ Tp,1.

3. For each k ∈ {0, . . . , 15}:
– Assign to each trace Tj ∈ Tp,1 a label lk(Tj) equal to the value of the

S-box output in the first round during the evaluation of the kth byte of
RANDj⊕ (OPC⊕ K):

lk(Tj) = S-box[RANDj,k ⊕ (OPC ⊕K)k],

where (OPC⊕K)k is the kth byte of OPC⊕K and RANDj,k is the kth
byte of the challenge RANDj used to generate Tj . OPC⊕K and RANDj,k

is assumed to be known during profiling.
– Use the labeled set of traces Tp,1 to train a model CNN1,k : Rm → I256,

I := {x ∈ R | 0 ≤ x ≤ 1}, which takes as input a trace Tj ∈ Rm and
produces as output a score vector Sj,k = CNN1,k(Tj) ∈ I256 in which
the value of the ith element, sj,k,i, is the probability that the S-box
output in the first round is equal to i ∈ {0, . . . , 255} when the kth byte
of RANDj⊕ (OPC⊕ K) is processed:

sj,k,i = Pr(S-box[RANDj,k ⊕ (OPC ⊕K)k] = i).

The training strategy is described in Section 4.1.
4. Once all bytes of OPC⊕K are recovered, use the profiling USIM to capture

a large set of power traces Tp,2 including the interval corresponding to the
execution of S-box in the second round of AES.

5. For each k ∈ {0, . . . , 15}:
– Assign to each trace Tj ∈ Tp,2 a label lk(Tj) equal to the value of the

S-box output in the second round during the evaluation of the kth byte
of statej⊕RK1:

lk(Tj) = S-box[statej,k ⊕ RK1,k],
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where RK1,k is the kth subkey of the RK1 and statej,k is the kth byte
of statej after ShiftRows() and MixColumns() in the first round for
the challenge RANDj . The value of statek is known for any RANDj once
all bytes of OPC⊕K are recovered.

– Use the labeled set of traces Tp,2 to train a model CNN2,k : Rm → I256
which takes as input a trace Tj ∈ Rm and produces as output a score
vector Sj,k = CNN2,k(Tj) ∈ I256 in which the value of the ith element,
sj,k,i, is the probability of that the S-box output in the second round is
equal to i ∈ {0, . . . , 255} when the kth byte of statej⊕RK1 is processed:

sj,k,i = Pr(S-box[statej,k ⊕ RK1,k] = i).

The training strategy is described in Section 4.1.

3.6 Attack Stage

At the attack stage, the trained models CNN1,k and CNN2,k are used to recover
the kth byte of OPC⊕ K and RK1, respectively, for all k ∈ {0, . . . , 15}.

To recover the bytes of OPC⊕ K:

1. Identify the start of MILENAGE execution in the trace of the victim USIM
(see Fig. 4 and 5). Set the offset for capture so that traces include the
computation of S-box in the first round of AES.

2. Use the victim USIM to execute MILENAGE for a small number na of
random challenges RAND0, . . . , RANDna−1 and capture the resulting set of
traces Ta,1 = {T0, . . . , Tna−1}, with m data points in each trace where m is
the input size of CNN1,k.

3. For each k ∈ {0, . . . , 15}, use the model CNN1,k to classify the traces of an
ordered set Ta,1. For each j ∈ {0, . . . , na−1}, the trace Tj ∈ Ta,1 is classified
as

l̃ = arg max
i∈{0,...,255}

(

j∏
l=0

sl,k,i),

where sl,k,i is the ith element of the score vector Sl,k = CNN1,k(Tl) of a

trace Tl ∈ Ta,1 which precedes Tj in Ta,1. Once l̃ = lk(Tj), the classification
is successful. The kth byte of OPC⊕ K is then recovered as

(OPC ⊕K)k = S-box−1(lk(Tj))⊕ RANDj,k.

where RANDj,k is the kth byte of RANDj used to generate the trace Tj .

The subkeys of the round key RK1 are recovered similarly using the models
CNN2,k, k ∈ {0, . . . , 15}, except that the offset for capture is selected so that
traces of the set Ta,2 = {T0, . . . , Tna−1} include the computation of S-box in
the second round of AES. Once a trace Tj ∈ Ta,2 is successfully classified as

l̃ = lk(Tj) for some j ∈ {0, . . . , np − 1}, the kth byte of RK1 is recovered as

RK1,k = S-box−1(lk(Tj))⊕ statej,k,
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where statej,k is the kth byte of statej after ShiftRows() and MixColumns()
in the first round for the challenge RANDj .

Finally, K is derived from RK1 using the key expansion algorithm of AES.

4 Experimental Results

In the experiments, we used two identical USIMs of type described in Section 3.2.
One card was used for profiling and another - for attack. In the section, we refer
to these cards as USIMp and USIMa, respectively.

Using the equipment and the method described in Sections 3.1 and 3.3, we
captured two large sets of traces of size np = 35.5K from USIMp - one for the first
round, Tp,1, and another the second round of AES, Tp,2. Similarly, we captured
two smaller sets of traces, Ta,1 and Ta,2, of size na = 6K from USIMa. Each
trace in these four sets contains m = 24.4K data points.

4.1 Training Process

Initially, we tried three strategies: (1) Training an MLP model on synchronized
traces; (2) Training a CNN model on synchronized traces; (3) Training a CNN
model on de-synchronized traces.

Early testing showed that both MLP and CNN models trained on traces from
USIMp can recover subkeys from USIMa. It was also possible to recover the key
using a CNN model trained on de-synchronized traces. However, the CNN model
trained on synchronized traces has shown significantly better results than the
other two, so we focused on it.

We used 70% of traces from USIMp for training and 30% for validation. We
searched for the best options for learning rate, number of epochs, and number
of layers. A lot of different sizes of filter kernels were tried for the convolution
layers, and different input sizes were tested.

After many experiments, we settled for the model with the architecture shown
in Table 1. The model was trained for 100 epochs using batch size 100. The
RMSprop optimizer with a learning rate of 0.0001 and no learning rate decay
was used. No dropout was used. We found it is best to train on the entire
buffer of ChipWhisperer, which contains 24.4K data points. For this reason, the
input layer size of the model in Table 1 is 24.4K. The first kernel is quite large
because the execution of S-box operation takes a large number of data points
(approx. 900). The shape of a power trace suggests that a single S-box operation
is performed on four bytes at a time, i.e. this USIM uses a 32-bit microcontroller.

To train the model CNN1,k which classifies the kth byte of OPC⊕K, each
trace Tj ∈ Tp,1 is assigned a label equal to the value of the S-box output for the
input RANDj,k⊕ (OPC⊕ K)k, where RANDj,k is the kth byte of the challenge
RANDj used to generate Tj , for all k ∈ {0, . . . , 15} and j ∈ {0, . . . , np − 1}.

To train the model CNN2,k which classifies the kth subkey of RK1, each trace
Tj ∈ Tp,2 is assigned a label equal to the value of the S-box output for the input
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Layer Type Output Shape Parameter #

Input (Dense) (None, 24400, 1) 0
Conv1D 1 (None, 24400, 8) 7208
AveragePooling1 1 (None, 3050, 8) 0
Conv1D 2 (None, 3050, 16) 1296
AveragePooling1 2 (None, 305, 16) 0
Conv1D 3 (None, 305, 32) 5152
AveragePooling1 3 (None, 61, 32) 0
Conv1D 4 (None, 61, 64) 18496
AveragePooling1 4 (None, 6, 64) 0
Conv1D 5 (None, 4, 128) 24704
AveragePooling1 5 (None, 1, 128) 0
Flatten (None, 128) 0
Dense 1 (None, 300) 38700
Output (Dense) (None, 256) 77056

Total Parameters: 172,612

Table 1. Architecture of the best CNN model.

statej,k⊕RK1,k, where statej,k is the kth byte of statej after ShiftRows() and
MixColumns() in the first round, for all k ∈ {0, . . . , 15} and j ∈ {0, . . . , np−1}.

We would like to mention that it might possible to train a single neural
network capable of recovering any byte of OPC⊕K (or RK1). Such a possibility
has been already demonstrated for an 8-bit microcontroller implementation of
AES-128 [6]. The MLP model presented in [6] can recover all subkeys from the
target device different from the profiling device. The MLP was trained on a union
of 16 sets of power traces Tk = {Tk,1, . . . , Tk,n}, k ∈ {0, . . . , 15}, such that the
trace Tk,j ∈ Tk, j ∈ {0, . . . , n−1}, contains data points in which S-box evaluates
the kth byte of P ⊕ K, where P is the plaintext. However, taking into account
that our USIM implementation of AES-128 is based on a 32-bit microcontroller,
we have chosen to train the networks separately for each byte position.

4.2 Testing Results

For any k ∈ {0, 1, . . . , 15}, the CNN1,k with the architecture shown in Table 1
trained on traces Tp,1 from USIMp successfully recovers the kth byte of OPC⊕K
from at most 10 traces Ta,1 of USIMa. The byte number does not seem to
matter. As an example, Fig. 9(a) and (b) show the worst and the average ranks
of models CNN1,0 and CNN1,5. One can see that the plots are similar. For k = 0,
the average number of traces is 2.24. For k = 5, it is 2.5.

Similarly, for any k ∈ {0, 1, . . . , 15}, the CNN2,k with the architecture shown
in Table 1 trained on traces Tp,2 from USIMp successfully recovers the kth subkey
of RK1 from at most 20 traces Ta,2 of USIMa (see Fig. 9(c)). The average number
of traces for k = 0 in the second round is 4.09.

We believe that the results for the first and second rounds are different be-
cause we tuned the model architecture in Table 1 for the first round. Since we
trained on the entire buffer of ChipWhisperer, traces of the first round include
the computation of RAND ⊕ (OPC ⊕ K) in the initial round. By selecting the
segments of traces more carefully and making the model’s input size equal to
exact size of rounds, it might be possible to get more similar results.
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(a) CNN1,0 (b) CNN1,5 (c) CNN2,0

Fig. 9. Average and worst ranks for 6K traces from USIMa.

We also tested the models’ abilities to attack other byte positions. Unsurpris-
ingly, the CNN1,0 could not recover the 5th byte of OPC⊕K and vice versa, the
CNN1,5 could not recover the 0th byte of OPC⊕K. More surprising was that the
CNN1,0 showed no noticeable ability to recover the 0th subkey of RK1. Previous
work has shown that some deep learning models can do that [6]. We suppose that
this is a drawback of training on the entire buffer, 24.4K data points, instead of
the part of the trace corresponding to the S-box operation only, as in [6].

On the positive side, our current methodology yields highly specialized mod-
els with excellent classification accuracy. Recall that we need 300 traces from the
USIM to recover the key by CPA (see Fig. 8). So, the presented models require
an order of magnitude fewer traces from the victim USIM to recover the key.

5 Conclusion

We demonstrated a profiled deep learning attack on a commercial USIM card
which requires less than 20 traces to recover the key (four traces on average).

Given the huge investments in deep learning, deep learning techniques are
likely to become more efficient in the future. More efficient techniques may reduce
the number of traces required recover the key from a USIM to a single trace.
This may have serious consequences for the security of services and applications
provided by mobile communication networks unless appropriate countermeasures
are designed.
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