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Overview

• Motivation

• Background

• AKA, MILENAGE, AES

• Measurment setup

• Locating the attack point 

• Training & key extraction using CNN

• Demo of a USIM attack 

• Summary and open problems
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Universal Subscriber Identity Module (USIM)

• USIM is a type of smart card

• Contains: 

– Secret key K pre-shared with home subscriber server

– International Mobile Subscriber Identity (IMSI)

– Operator Variant Algorithm Configuration Field (OP)

– …

• All cryptographic operations involving K are carried out 

within the USIM
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3G/4G/5G security relies on the USIM’s key
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Authentication and Key Agreement (AKA) in 4G
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MILENAGE algorithm

6

RAND

EK
SQN||AMF||SQN||AMF

rotate
by r1

EK

rotate
by r3

EK

rotate
by r2

EK

rotate
by r5

E
K

rotate
by r4

EK

OP
C

c1

f1 f1* f5 f2 f3 f4 f5*

OP
C

OP
C

OP
C

OP
C

c2 c3 c4 c5

OP
C OP

C
OP

C
OP

C
OP

C

OPC
EKOP OP

C

MAC-A RES CK IKAKMAC-S AK

Derived from AUTH



AES-128 algorithm
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Measurment setup
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USIM power trace for one MILENAGE call
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Zoomed interval of MILENAGE execution
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Correlation Power Analysis (CPA)

• In MILENAGE, RAND  OPC is first computed                 

and then the result is encrypted

• If Ek is AES-128, the key K can be recovered in two 

steps: 

1. Recover OPC ⊕ K by a CPA with S-box output in the 

first round as the attack point 

2. Recover the 1st round key, RK1, by a CPA with the S-

box output in the second round as the attack point

3. Compute K from RK1

4. OPC = (OPC ⊕ K) ⊕ K
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How deep learning is used in power analysis
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Profiling stage: Train a neural network using traces from 

profiling devices 
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How deep learning is used in power analysis
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Attack stage: Use the trained network to classify traces from 

the device under attack
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Training setup
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• We used Tensorflow with Keras in Python 3.6 for our 

training code.

• Due to the file size of our training set we trained our network 

on a high-performance computing system.

• Training using our method could be done on most modern 

workstations with enough memory.



Development of our neural net design pt. 1
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• Our first models were all pure MLP models.

− Centered on a single block of 4 subkeys.

− Many were successful in learning to recover subkeys.

− The improvement compared to CPA was small.

• We trained CNN models centered on 4 subkeys.

− Performed marginally better than pure MLP models.

− Early versions lacked specific rationale for the design.

• CNN trained on the entire trace showed a lot of promise.

• We then changed the convolutional layer to be designed 

with the shape of the traces in mind. 



Why train on full round?
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• Early testing limited data to center on S-box calculations.

− Makes the process require more expertise.

• Idea: Let the neural net solve the issue. Use all data in trace.

• Training and testing needs no offset.

• We could potentially train a model requiring no 

synchronization of traces.

− Would make the process of attacking a victim card even 

easier. Could potentially attack the victim real time.

− Future work.



Development of our neural net design pt. 2
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⚫ First convolutional layer uses kernels large enough to 

contain an entire S-box calculation. We use 900 to be sure.



Development of our neural net design pt. 3
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⚫ We tried both using no padding and using causal padding.
− Causal padding seemed to work better.

− We wanted to try to keep all early convolutions causal to not 

create an offset between the input and output of convolutions

⚫ We use max pooling and convolutions in 5 layers to convert 

all information from temporal space to feature space.

⚫ The network presented here uses only a single very wide 

perceptron layer after the convolutions.
− Other networks were trained with more depth in the MLP 

part. Some performed marginally better, but a single hidden 

layer was more consistent in training successfully. 



Development of our neural net design pt. 4
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⚫

⚫

⚫ The final version
−

−
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Training pt. 1



Training pt. 2

21

⚫ To successfully recover the whole key we need to train 32 

models.
− This is because we need 16 models to recover K XOR OPc

and then we need 1 model per subkey.

⚫ The total performance will be limited by the worst model.
− This is why we present models using parameter which most 

consistently got good results in our testing.

⚫ The network does not always learn. This has to do with the 

initialization. Fortunately, it is immediately apparent, so 

training can be reinitialized.

− There is also an option to retrain a successful CNN model.

−



Training pt. 3
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⚫ Since we already know the key and OPc for our USIM 

cards we decided to limit our scope to training 3 models.

⚫ We have 2 models recovering different round 1 bytes, and 

1 model recovering a round 2 byte.
− Specifically, byte 0 and byte 5 of round 1, byte 0 of round 2.

⚫ This is enough to serve as a proof of concept. Previous 

research on the topic indicates there likely isn’t a significant 

difference in recovering different bytes.

− We intentionally chose 2 bytes from different computations 

for round 1. 

− If bytes of round 1 are correctly predicted, the bytes of round 

2 are separate problems.



Testing
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⚫ Testing was done using the open-source software tool for 

deep learning side channel analysis called DLSCA.

⚫ The average rank test was used to evaluate model 

performance. It calculates the average number of guesses 

which are more likely than the correct one.

⚫ Once the average rank is 0, every iteration of the test has 

successfully recovered the subkey. 
− The offset should be set to 0 in the test code.

⚫ The tool stores the raw data of the rank progression as 

well. We used this to calculate the expected number of 

traces needed to recover the key.



Results (Round 1, subkey 0)
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Results (Round 1, subkey 5)
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Results (Round 2, subkey 0)
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Conclusions pt. 1
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⚫ The difficulties associated with performing a SCA on USIM 

are two-fold:
− Properly measuring the side channel.

− Analyzing the measured data to extract hidden information.

⚫ Tools like ChipWhisperer and the LEIA board have made 

the issue of measurements easier.  

− For capturing traces from other USIM of the same brand it is 

sometimes as easy as running a capture script.

⚫ Our work partially addresses the second issue. As the 

demo will show, if someone gives you a pre-trained model 

for the same brand of USIM, the attack is trivially easy.



Conclusions pt. 2
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⚫ Our proposed method also requires an order of magnitude 

fewer traces to be captured for the attack step compared to 

previously published research.

− This makes non-synthetic attack scenarios more likely.

− If future work can improve the result by another order of 

magnitude, a single measurement attack may be possible.

⚫ There is likely still room for significant improvements.



Conclusions regarding viability and price
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⚫ Equipment cost to perform attack is very low.
− ChipWhisperer Lite: 250 USD

− ChipWhisperer UFO board: 240 USD

− LEIA manufactured in China: 3000 RMB

− Total                                                             <1000 USD

⚫ A third-party malicious actor could train a model and sell. 

With better generalization it might not be limited to one brand.

⚫ If trace capture was made easier, such as with pattern 

recognition, an attacker would no longer need any 

specialized knowledge or skills.

⚫ ML based SCA poses a real threat.



Demo
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⚫ Video demo showing steps needed to capture traces, 

confirm attack point, followed by a test analogous to how 

an attack would be performed.

⚫ The test only uses the known key to measure performance. 

This helps us understand how many traces an attacker 

would need to reach convergence.


