
Optimized Software
Implementations for the

Lightweight Encryption Scheme
ForkAE

Arne Deprez1, Elena Andreeva2, Jose Maria Bermudo Mera3,
Angshuman Karmakar3, and Antoon Purnal3

1 arne.deprez1@gmail.com
2 Alpen-Adria University, Austria elena.andreeva@aau.at
3 imec-COSIC, KU Leuven. Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
1

Introduction

ForkAE
AEAD: Authenticated Encryption with Associated Data

ForkSkinny primitive

2nd round NIST LWC candidate

Lightweight Cryptography
Constrained devices ➔ current crypto too heavy

NIST LWC competition for new primitives/protocols

IoT, RFID, smart cards, automotive,…

Optimized Software
Implementations

Cross platform & platform specific

Different devices

Resistance against timing attacks

2

Contributions

• Analyze existing portable ForkAE implementations

• Optimize decryption
• Reduce latency

• Reduce code size

• Platform-specific optimizations:
• Platforms where (cache-) timing attacks are not applicable ➔ table-lookups

• Platforms with SIMD parallel hardware extensions ➔ exploit data-level parallelism

• Benchmark performance of implementations on two platforms
• ARM Cortex-M0

• ARM Cortex-A9

• Compare with other SKINNY-based schemes

4

Overview

• Introduction

• Contributions

• ForkAE

• Portable implementations

• Table-based implementations

• Parallel implementations

• Conclusion

• AEAD from new primitive:
ForkSkinny

• Uses SKINNY round function
but forks after certain amount
of rounds

• Produces two independent
permutations but with
reduced computational cost

• Designed for encryption of
small messages

ForkAE

6

ForkAE

• ForkAE uses ForkSkinny in PAEF/SAEF modes of operation

• 1 ForkSkinny call with 1 output
per associated data block

• 1 ForkSkinny call with 2 outputs (#rounds x 1.6)
per message block

• Standard block cipher modes of operation (e.g. GCM):

• Fixed cost ➔ extra block function call(s)
for processing nonce or generating tag

• Because of double output ➔ no fixed cost for ForkAE
➔ better performance for smallest messages

Image: ForkAE website

Image: wikipedia

https://www.esat.kuleuven.be/cosic/forkae/
https://en.wikipedia.org/wiki/Galois/Counter_Mode

ForkAE: PAEF (Parallel AEAD from a Forkcipher)

8Image: ForkAE website

https://www.esat.kuleuven.be/cosic/forkae/

ForkAE: SAEF (Sequential AEAD from a Forkcipher)

9Image: ForkAE website

https://www.esat.kuleuven.be/cosic/forkae/

Overview

• Introduction

• Contributions

• ForkAE

• Portable implementations

• Table-based implementations

• Parallel implementations

• Conclusion

10

Portable implementations

• Low latency ➔ focus on primitive

• Optimized
• Memory cost (ROM)
• Memory usage (RAM)
• Speed (clock cycles)

• Constant time
• Resistance to (cache-)timing attacks
• No secret-dependent table lookups
• Verification using the dudect tool

Images: SKINNY specification

11

https://eprint.iacr.org/2016/1123.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf

Portable implementations

• Implementation by Rhys Weatherley
https://rweather.github.io/lightweight-crypto/

• 32-bit implementation:
• State saved per 32-bit row
• All steps calculated on entire row

• S-box calculated

➔ no more table-look ups

➔ resistance against timing attacks

12

Image:
SKINNY specification

https://rweather.github.io/lightweight-crypto/
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf

Portable implementations

Decryption

• In existing implementations
➔ fast-forward TKS + reverse

• Optimization
➔ preprocess TKS once + store

• Higher performance
• 17 – 38 % speed-up

• Lower code size (ROM)
• Reduction up to 1kB

• Higher memory usage (RAM)
• 252-696 bytes

13

• Results on Cortex-A9 and Cortex-M0
• Speed expressed in average

cycles/byte

• Code size (ROM) and
memory usage (RAM) in bytes

• After optimization
• Code size reduction

• Speed-up

• Higher RAM usage

• Difference between decryption and
encryption reduced

14

Portable implementations

Portable implementations

• Results on STM32F7 from https://lwc.las3.de/ 15

• Without preprocessed TKS • With preprocessed TKS

https://lwc.las3.de/

Overview

• Introduction

• Contributions

• ForkAE

• Portable implementations

• Table-based implementations

• Parallel implementations

• Conclusion

Table-based implementations

• Similar to AES table look-up
implementation

• Calculate effect of round function on
column (32-bit) of internal state

• Combine steps in table look-up

• Addition of key material before MixColumns
➔ More difficult than AES

17

Table-based encryption

• 4 tables of 1kB + 2 tables for AC

• 1 round = 18 lookups + 19 XOR
(+ calc. of round-key columns)

• Alternative:

• Use only 1 T-table of 1kB

• Minimal extra computation

18

Table-based decryption

• For table lookups to be possible:

• SubCells (non-linear) 1st step

• ShiftRows before MixColumns

• Re-order operations & define new rounds

• Addition of constants and tweakey at the
end of the round
➔ more efficient than encryption

19

Results table-based implementations

20

• Performance on Arm Cortex-M0
• Encryption

• Speed-up of up to 20%

• Fastest when tables stored in RAM

• Small difference in performance for
4 tables vs. 1 table

• Decryption
• Speed-up of up to 25%

• For implementation with
• 1 lookup table

• Stored in ROM

Table-based implementations

1500

2000

2500

3000

3500

4000

C
yc

le
s

p
er

 b
yt

e

PAEF-ForkSkinny-128-288 encryption performance

portable

1 table (ROM)

1 table (RAM)

4 tables (ROM)

4 tables (RAM)

21

• Memory cost on Arm Cortex-M0
• Reduced code size because of

simpler round function

• Impact on memory can be greatly
reduced when using only 1 lookup
table

• RAM is limited resource
➔ carefully consider if speed-up is
worth it

Table-based implementations

1 lookup table (RAM)

1 lookup table (ROM)

4 lookup tables (RAM)

4 lookup tables (ROM)

Portable implementation

0 1000 2000 3000 4000 5000 6000 7000 8000

Memory size (bytes)

Memory cost for PAEF-ForkSkinny-128-288
encryption

ROM

RAM

22

Overview

• Introduction

• Contributions

• ForkAE

• Portable implementations

• Table-based implementations

• Parallel implementations

• Conclusion

• Many optimized software implementations: bitslicing

• Works best for blockciphers with parallel mode of operation + enough
data
• e.g. AES bitsliced implementation: 8 blocks in parallel
➔ 128*8 = 1024-bit input data needed

• Bitslicing not suitable for short messages:

• Not enough blocks for parallelization

• Overhead (conversion to bitsliced representation) becomes dominant

• Throughput ↔ Latency

Parallel implementations

24

• Target ARM processors with NEON hardware extension
• 128-bit SIMD (Single-Instruction Multiple-Data)

• Arm Cortex-A9

• Exploit data-level parallelism in the ForkSkinny primitive
• In the round function:

• S-box calculated for all cells in parallel

• Parallelism introduced by the fork:
• Calculate S-box for two branches in parallel

• Only for 64-bit instance (with 256-bit SIMD also possible for other instances)

• Needs preprocessed TKS

• Only encryption

Parallel implementations

25

• Neon assembly S-box implementations

• Results
• 128-bit instances

• 30% less clock cycles compared to portable implementations

• 0,5 kB code size (ROM) reduction

• RAM usage remains the same

• 64-bit instance
• 29% speed-up for encryption, 17% for decryption

• ROM size ± equal

• RAM size increased for encryption (preprocessed TKS)

Parallel implementations

26

27

ForkSkinny-64-192 on ARM Cortex-A9:

• 17 rounds before fork
23 rounds after fork

• One round 64-bit SKINNY with NEON S-box:
95 clock cycles

• Parallel calculation of 2 rounds after fork:
112 clock cycles

𝑭𝒐𝒓𝒌𝑺𝒌𝒊𝒏𝒏𝒚

𝑺𝑲𝑰𝑵𝑵𝒀 − 𝑨𝑬𝑨𝑫
=
𝟔𝟑 ∗ 𝟗𝟓

𝟒𝟎 ∗ 𝟗𝟓
= 𝟏. 𝟓𝟖

𝑭𝒐𝒓𝒌𝑺𝒌𝒊𝒏𝒏𝒚 //

𝑺𝑲𝑰𝑵𝑵𝒀 − 𝑨𝑬𝑨𝑫
=

𝟏𝟕 ∗ 𝟗𝟓 + 𝟐𝟑 ∗ 𝟏𝟏𝟐

𝟒𝟎 ∗ 𝟗𝟓
= 𝟏. 𝟏𝟎

• Calls to primitive for M message blocks:
• ForkAE M
• Other SKINNY based ciphers M+1

Parallel implementations

28

Overview

• Introduction

• Contributions

• ForkAE

• Portable implementations

• Table-based implementations

• Parallel implementations

• Conclusion

• Efficient and constant-time portable implementations of ForkAE
• Trade memory usage for faster decryption

• Platform specific optimizations
• Table-based implementations

• Platforms without caches
• Combine calculations in table-lookups
• Reduce memory cost by using only 1 table

• Neon SIMD parallel implementations
• Data-level parallelism in ForkSkinny primitive
• Parallel S-box calculations
• Parallelism of the fork

• All implementations available at https://github.com/ArneDeprez1/ForkAE-SW

Conclusion

30

https://github.com/ArneDeprez1/ForkAE-SW

• Not “One implementation fits all”

• Always a trade-off

• Different platforms allow for different implementations

• Need a cipher that allows for different implementation strategies
➔ this is the case for ForkAE

Takeaways

31

