
Secure and Efficient Delegation
of Pairings with Online Inputs

Giovanni Di Crescenzo1, Matluba Khodjaeva2,
Delaram Kahrobaei3, and Vladimir Shpilrain4

1 Perspecta Labs Inc. Basking Ridge, NJ, USA.
Email: gdicrescenzo@perspectalabs.com

2 CUNY John Jay College of Criminal Justice. New York, NY, USA.
Email: mkhodjaeva@jjay.cuny.edu

3 University of York. Heslington, York, UK.
Email: delaram.kahrobaei@york.ac.uk

4 City University of New York. New York, NY, USA.
Email: shpil@groups.sci.ccny.cuny.edu

Abstract. Delegation of pairings from a computationally weaker client
to a computationally stronger server has been advocated to expand the
applicability of pairing-based cryptographic protocols to computation
paradigms with resource-constrained devices. Important requirements for
such delegation protocols include privacy of the client’s inputs and secu-
rity of the client’s output, in the sense of detecting, with high probability,
any malicious server’s attempt to convince the client of an incorrect pair-
ing result. In this paper we show that pairings with inputs only available
in the online phase can be efficiently, privately and securely delegated to a
single, possibly malicious, server. We present new protocols in 2 different
scenarios: (1) the two pairing inputs are publicly known; (2) privacy of
both pairing inputs needs to be maintained (left open in previous papers;
e.g., [23]). In both cases, we improve the online-phase client’s runtime
with respect to previous work. In the latter case, we show the first proto-
col where the client’s online-phase runtime is faster than non-delegated
computation for all of the most practical known curves. In previous work,
the client’s runtime was worse, especially for one of the most practical
elliptic curves underlying the pairing function (i.e., BN-12).

Keywords: Applied Cryptography · Secure Delegation · Pairings · Bi-
linear Maps · Elliptic Curves · Group Theory

1 Introduction

Server-aided cryptography is an active research direction addressing the prob-
lem of computationally weaker clients delegating the most expensive crypto-
graphic computations to more powerful servers. Recently, this area has seen an
increased interest in reducing computation in client devices, including smart
cards, smart phones, and even more resource-constrained devices, motivated by



shifts in modern computation paradigms, towards more smart-card computing,
cloud/edge/fog computing, etc.

The first formal model for secure delegation protocols was presented in [15],
where a secure delegation protocol is formally defined as a secure function eval-
uation (a concept first proposed in [24]) of the client’s function delegated to
the server. Follow-up models include the model from [11] which defines separate
requirements of correctness, (input) privacy and (output) security. In this paper
we use a model of the latter type, since it allows a more granular parameterized
description of solution properties (but note that our solutions can be proved in
both model types). In this model, we have a client C, with inputs A,B, who
delegates to one or more servers the computation of a pairing function e on the
client’s input, and the main desired requirements are:

1. δ-correctness: if both parties follow the protocol, C’s output y at the end of
the protocol, is equal to the value obtained by evaluating pairing e on its
input (A,B), with probability at least δ (for some high δ value);

2. input εp-privacy: for any malicious algorithm Adv returning possible input
pairs (A0, B0) or (A1, B1), playing as S in the protocol with C, and trying
to guess which of these two pairs is being used by C as input, Adv’s guess
is only correct with probability 1/2± εp (for some small εp value);

3. output εs-security: for any malicious algorithm Adv returning input pair
(A,B), playing as S in the protocol with C on input (A,B), and trying to
convince C to return an incorrect output y′, the probability that y′ 6= e(A,B)
is at most εs (for some small εs value);

4. efficiency with parameters (tF , tC , tS , tP , cc,mc): the protocol performance
is upper-bounded by these functions: tF , the runtime to compute pairing e
without delegation; tC , C’s runtime in the online phase; tS , S’s runtime; tP ,
C’s runtime in the offline phase; cc, the communication exchanged between
C and S; and mc, the number of messages exchanged between C and S.

As in previous work in the area, somewhat expensive computation can be per-
formed in an offline phase (i.e., before the pairing result is used in a cryptographic
protocol) and stored on the client’s device (say, at device deployment time), and
the reduction in the client’s computation is mainly required in the online phase
(i.e., when the pairing result is used in a cryptographic protocol). In this paper
we focus on input scenarios where inputs A,B to pairing e are only available in
the online phase, which is the case of interest in some important cryptographic
protocols (most notably, Joux’s 3-party key agreement protocol [16]). This pa-
per can be seen as a follow-up to [10], where we mainly studied the technically
simpler input scenarios where at least one of inputs A,B is also available in the
offline phase, and briefly discussed that direct compositions of those protocols
can be used to design protocols in technically more complex scenarios of online
inputs. Here, we use different techniques, such as new probabilistic tests, and
design 2 new protocols in the scenarios of online inputs, which improve over both
previous work and direct compositions of protocols for other input scenarios.

Our Contributions. In this paper we show that when both inputs are only
available in the online phase, bilinear-map pairings can be efficiently, privately

2



and securely delegated to a single, possibly malicious, server. Our results in-
clude 2 new protocols, each for a different input scenario, improving the main
performance metric (client’s online runtime), with respect to all 4 of the re-
cently proposed practical elliptic curves with security levels between 128 and 256
bits, as benchmarked in [6]. In both our protocols, the client’s online program
only performs 1 exponentiation to a short (e.g., 128-bit) exponent in the most
computationally intensive curve’s target group. This improves over all previous
protocols, where the client required either a larger number of exponentiations
to short exponents or exponentiations to longer exponents, or more expensive
pairing operations.

Our first protocol, presented in Section 3, considers the case where both
inputs A,B are publicly available. Here, in the online phase, the client only per-
forms 1 short-exponent exponentiation in the target pairing group, 1 scalar mul-
tiplication in A’s group and 1 short-scalar multiplication in B’s group (and other
lower-order operations). Previously, a protocol with at least 1 long-exponent ex-
ponentiation was proved in [8, 7], and a protocol with 2 short-exponent expo-
nentiations was briefly discussed in [10], as a direct composition of protocols in
scenarios where at least one input is known in the offline phase.

Our second protocol, presented in Section 4, considers the case where pri-
vacy of A,B needs to be guaranteed. Here, in the online phase, the client only
performs 1 short-exponent exponentiation in the target pairing group, 3 scalar
multiplications in A’s group and 2 scalar multiplications (of which 1 short) in
B’s group (and other lower-order operations). This protocol is the first where
the client’s online runtime is faster than non-delegated computation with respect
to all 4 of the elliptic curves benchmarked in [6]. Previously, this was provably
achieved for 1 curve in [7] and an approach was briefly discussed in [10] achieving
the same for 3 curves, using a direct composition of protocols in scenarios where
at least one input is known in the offline phase.

Both our protocols only consist of a single communication exchange between
client and server, and only require client and server to communicate a constant
(specifically, 6 and 11) number of group elements.

Related Work. Pairing delegation to a single server was first studied by Girault
et al. [12]. However, they only considered input secrecy but no output security
against a malicious server. Guillevic et al. [13] proposed a more efficient scheme
but their method increases communication complexity between client and server
and their scheme does not provide security against a malicious server. Single-
server protocols with this latter property for delegating e(A,B) have first been
provided by Chevallier-Mames et al. [8] and later by Kang et al. [18]. Canard
et al. [7] improved these constructions and proposed more efficient and secure
pairing delegation protocols. In particular, in [7] the authors showed that in their
protocols the client’s runtime is strictly lower than non-delegated computation
of a pairing on the so-called KSS-18 curve [17]. Later, Guillevic et al. [13] showed
that in protocols in [7] the client is actually less efficient than in a non-delegated
computation of the pairing for the state-of-the-art optimal ate pairing on the
Barreto-Naehrig curve (BN-12).

3



2 Pairing Definitions

In this section we recall the definition and a number of useful facts about pair-
ings, including current most practical realizations, as well as definitions and
benchmark values to evaluate the efficiency of our protocols.

Bilinear Maps. Let G1, G2 be additive cyclic groups of order l and GT be a
multiplicative cyclic group of the same order l, for some large prime l. A bilinear
map (also called pairing and so called from now on) is an efficiently computable
map e : G1 × G2 → GT with the following properties:

1. Bilinearity: for allA ∈ G1,B ∈ G2 and any r, s ∈ Zl, it holds that e(rA, sB) =
e(A,B)rs

2. Non-triviality: if U is a generator for G1 and V is a generator for G2 then
e(U, V ) is a generator for GT

The last property is there to rule out the trivial case where e maps all of its inputs
to 1. We denote a conventional description of the bilinear map e as desc(e).

The currently most practical pairing realizations use an ordinary elliptic curve
E defined over a field Fp, for some large prime p, as follows. Group G1 is the l-
order additive subgroup of E(Fp); group G2 is a specific l-order additive subgroup
of E(Fpk) contained in E(Fpk) \ E(Fp); and group GT is the l-order multiplica-
tive subgroup of Fpk . Here, k is the embedding degree; i.e., the smallest positive
integer such that l|(pk − 1). After the Weil pairing was considered in [3], more
efficient constructions have been proposed as variants of the Tate pairing, in-
cluding the more recent ate pairing variants (see, e.g., [22] for more details on
the currently most practical pairing realizations).

For asymptotic efficiency evaluation of our protocols, we will use the following
definitions:

– a1 (resp. a2) denotes the runtime for addition in G1 (resp. G2);
– m1(`) (resp. m2(`)) denotes the runtime for scalar multiplication of a group

value in G1 (resp. G2) with an `-bit scalar value;
– mT denotes the runtime for multiplication of group values in GT ;
– eT (`) denotes the runtime for an exponentiation in GT to an `-bit exponent;
– pT denotes the runtime for the bilinear pairing e;
– il denotes the runtime for multiplicative inversion in Zl;
– tM denotes the runtime for testing membership of a value to GT ;
– σ denotes the computational security parameter (i.e., the parameter derived

from hardness studies of the underlying computational problem);
– λ denote the statistical security parameter (i.e., a parameter such that events

with probability 2−λ are extremely rare).

We recall some well-known facts about these quantities, of interest when eval-
uating the efficiency of our protocols. First, for large enough `, a1 << m1(`),
a2 << m2(`), mT (`) << eT (`), and eT (`) < pT . Also, using a double-and-
add (resp., square-and-multiply) algorithm, one can realize scalar multiplica-
tion (resp., exponentiation) in additive (resp., multiplicative) groups using, for

4



random scalars (resp., random exponents), about 1.5` additions (resp., multi-
plications). Finally, membership of a value w in GT can be tested using one
exponentiation in GT to the l-th power (i.e., checking that wl = 1), or, for some
specific elliptic curves, including some of the most recommended in practice, us-
ing about 1 multiplication in GT and lower-order Frobenius-based simplifications
(see, e.g., [21, 2]).

For concrete efficiency estimate of our protocols, we will set λ = 128 and
use benchmark results from [6] for the runtime of an optimal ate pairing and of
the other most expensive operations (i.e., scalar multiplication in groups G1, G2
and exponentiation in GT ) for the some of the most practical curve families, also
recalled in Table 1 below, as well as for the values of σ for each curve family,
recalled in Tables 2 and 3. We will also neglect lower-order operations such as
equality testing, assignments, Frobenius-based simplifications, etc.

Table 1. Benchmark results (obtained by [6] on an Intel Core i7-3520M CPU averaged
over thousands of random instances) for scalar multiplications in G1,G2 and exponen-
tiations in GT relative to an optimal ate pairing based on some of the some of the most
practical curve families, measured in millions (M) of clock cycles.

Security level Family-k Pairing e Scal. mul. in G1 Scal. mul. in G2 Exp. in GT

128-bits BN-12 7.0 0.9 1.8 3.1

192-bits
BLS-12 47.2 4.4 10.9 17.5
KSS-18 63.3 3.5 9.8 15.7

256-bits BLS-24 115.0 5.2 27.6 47.1

3 Delegating Pairings with Online Public Inputs

In this section we investigate client-server protocols for pairing delegation, in the
scenario where the two pairing inputs are known to both parties, and not before
the online phase. Our main result is a new protocol with desirable security and
efficiency properties. In what follows, we give a formal statement of our result, an
asymptotic and concrete efficiency comparison with the previous most efficient
protocols in the same input scenario, an informal description of the ideas behind
the protocol, a formal description of the protocol and a proof of the protocol’s
correctness and security properties.

Our first protocol satisfies the following

Theorem 1. Let e be a pairing, as defined in Section §2, let σ be its compu-
tational security parameter, and let λ be a statistical security parameter. There
exists (constructively) a client-server protocol (C, S) for delegating the compu-
tation of e, when inputs A and B are both publicly known in the online phase
which satisfies 1-correctness, 2−λ-security, 0-privacy, and efficiency with param-
eters (tF , tS , tP , tC , cc,mc), where

5



– tF = pT , tS = 3 pT and tP = pT +m2(σ) + il;
– tC ≤ a1 + a2 +m1(σ) +m2(λ) + 2mT + eT (λ) + 2 tM ;
– cc = 1 value in G1 + 2 values in G2 + 3 values in GT and mc = 2.

The main takeaway from this theorem is that C can securely and efficiently
delegate to S the computation of a bilinear pairing where both inputs A and
B are publicly known but only available in the online phase. In particular, in
the online phase C only performs 1 exponentiation to a λ-bit (thus, shorter)
exponent in GT , 1 scalar multiplication in G1, 1 multiplication in G2 by a short,
λ-bit scalar, and other lower-order operations. See Table 2 for a comparison with
closest previous work, also showing estimated ratios of C’s online runtime to a
non-delegated pairing calculation ranging between 0.158 and 0.326 depending
on the curve used. Additionally, C only computes 1 pairing in the offline phase,
S only computes 3 pairings, and C and S only exchange 2 messages containing
6 group values.

Table 2. Protocols comparison in the input scenario with public A and B. (The ex-
pression of tC only includes higher-order functions eT ,m1,m2. The estimated ratio
tC/tF also counts terms based on functions a1, a2,mT , tM and uses λ = 128.)

Protocols tC
Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[8] §5.2 eT (σ) +m1(σ) +m2(σ) 1.719 1.439 0.956 1.517

[7] §4.1 eT (σ) +m1(σ) 0.832 0.697 0.460 0.697

[10] §4.1 2 eT (λ) +m2(λ) +m1(σ) +m1(λ) 0.485 0.310 0.235 0.272

This paper §3 eT (λ) +m1(σ) +m2(λ) 0.326 0.216 0.158 0.179

Protocol description. Note that in the input scenario where both A and B are
public, a protocol satisfying correctness is trivial: C sends A,B, and S replies
with e(A,B). Also, there is no privacy property to satisfy, and so the challenge
remains to modify this protocol so to efficiently satisfy output security. Our
approach for that is based on a new probabilistic test which involves computation
of 2 additional pairings from S, the first with inputs A and a masked version of
B, and the second with inputs a masked version of A and a differently masked
version of B. Masks are chosen carefully so to achieve some cancellation effect
and to allow efficient verification from C, while especially minimizing the use of
exponentiations in GT to only 1 exponentiation to a short, λ-bit, exponent.

A formal description follows.

Offline Input to C and S: 1σ, 1λ, desc(e)

Offline phase instructions:

1. C randomly chooses U ∈ G1, P ∈ G2, c ∈ {1, . . . , 2λ} and r ∈ Z∗l
2. C sets r̂ = r−1 mod l, Q0 := r̂ · P , v := e(U,P ) and ov = (c, r, U, P,Q0, v)

6



Online Inputs: A ∈ G1 and B ∈ G2 to both C and S, and ov to C

Online phase instructions:

1. C sets Z := r(A− U), Q1 := c ·B + P and sends Z,Q0, Q1 to S

2. S computes w0 := e(A,B), w1 := e(A,Q1), w2 := e(Z,Q0)
S sends w0, w1, w2 to C

3. (Membership Test:) C checks that w0, w2 ∈ GT
(Probabilistic Test:) C checks that w1 = (w0)c · w2 · v

(with this test, C implicitly checks that w1 ∈ GT )
If any of these tests fails, C returns ⊥ and the protocol halts
C returns y = w0

Properties of the protocol (C, S): The efficiency properties are verified by
protocol inspection. In particular, as for C’s online runtime, note that the prob-
abilistic test requires 1 exponentiation to a short, λ-bit, exponent in GT ; the
computation of Z requires 1 scalar multiplication in G1; the computation of Q1

requires 1 multiplication in G2 by a short, λ-bit scalar. Additional lower-order
operations include 2 addition/subtractions in G1 or G2, 2 multiplications and a
small number of Frobenius-based simplifications in GT .

The correctness property follows by showing that if C and S follow the protocol,
C always outputs y = e(A,B). We show that the 2 tests performed by C are
always passed. The membership test is always passed by the pairing definition.
The probabilistic test is always passed since

wc0 · w2 · v = e(A,B)c · e(Z,Q0) · e(U,P )

= e(A,B)c · e(r(A− U), r−1 · P ) · e(U,P )

= e(A,B)c · e(A− U,P ) · e(U,P )

= e(A, c ·B) · e(A,P ) · e(U,P )−1 · e(U,P )

= e(A, c ·B + P ) = e(A,Q1) = w1

This implies that C never returns ⊥, and thus returns y = w0 = e(A,B).

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that S convinces C to output
a y such that y 6= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts, which we later prove:

1. the tuple (Z,Q0, Q1) leaks no information about c to S;

2. for any S’s message (w0, w1, w2) different than what would be returned ac-
cording to the protocol instructions, there is only one c for which the tuple
(w0, w1, w2) satisfies both membership and probabilistic tests in step 3;

3. for any S’s message (w0, w1, w2) different than what would be returned ac-
cording to the protocol instructions, the probability that (w0, w1, w2) satisfies
the probabilistic test is ≤ 2−λ.

7



Towards proving Fact 1, recall that G1,G2 are cyclic groups, and let G1 be a
generator of G1, and G2 be a generator of G2. Also, let a, b be values such that
A = aG1, B = bG2, and let u, z, p, q0, q1 be values such that

U = uG1, Z = zG1, P = pG2, Q0 = q0G2, Q1 = q1G2.

Note that (Z,Q0, Q1) = (zG1, q0G2, q1G2), and, since G1,G2 are cyclic groups
of prime order l, to prove Fact 1, it suffices to show that the distribution of the
triple (z, q0, q1) is independent on c, for all a, b ∈ Zl and any c ∈ {0, . . . , 2λ}.
The latter is proved as follows: first observe that q1 is uniformly distributed in
Zl since so is p and q1 = cb+ p mod l; next, observe that q0 is either = 0 when
p = 0 or is uniformly distributed in Z∗l , even conditioned on q1, since so is r and
q0 = r−1p mod l; and finally, observe that z is uniformly distributed in Zl, even
conditioned on q0, q1, since so is u and z = r(a− u) mod l.

Towards proving Fact 2, let (w0, w1, w2) be the values that would be returned
by S according to the protocol, and assume a malicious algorithm Adv, corrupt-
ing S returns a different triple (w′0, w

′
1, w

′
2). Because GT is cyclic, we can consider

a generator g for GT and write wi = gai , for i = 0, 1, 2. Note that if the member-
ship and probabilistic test are passed by (w′0, w

′
1, w

′
2), all values w′0, w

′
1, w

′
2 are

verified to be in GT . Then we can write

∀i = 0, 1, 2, ∃ui ∈ Zl w′i = gui · wi such that for some ui 6= 0.

Now, note that in Fact 2 we study the case u0 6= 0 mod l (or else y = w′0 = w0 =
e(A,B)), and consider the following equivalent rewritings of the probabilistic
test, obtained by variable substitutions and simplifications:

w′1 = (w′0)c · w′2 · v
gu1 · w1 = (gu0 · w0)c · gu2 · w2 · v
gu1 · w1 = gcu0+u2 · wc0 · w2 · v

gu1 = gcu0+u2

u1 = cu0 + u2 mod l,

where the 4th equality follows since w1 = wc0 · w2 · v. Now, if there exist two
distinct c1 and c2 such that

u1 = c1u0 + u2 mod l, and u1 = c2u0 + u2 mod l

then u0(c1 − c2) = 0 mod l, and finally c1 − c2 = 0 mod l (i.e c1 = c2), since
u0 6= 0 mod l. This shows that c is unique when u0 6= 0 mod l, which proves
Fact 2.

Towards proving Fact 3, note that, by Fact 1, C’s message Z,Q0, Q1 does
not leak any information about c. This implies that all values in {1, . . . , 2λ}
are still equally likely for c even when conditioning over messages Z,Q0, Q1.
Then, by using Fact 2, the probability that S’s message (w0, w1, w2) satisfies
the probabilistic test, is 1 divided by the number 2λ of values of c that are still
equally likely when conditioning over message Z,Q0, Q1. This proves Fact 3.

8



4 Delegating Pairings with Online Private Inputs

In this section we investigate client-server protocols for secure pairing delegation,
in the scenario where both of the pairing inputs are only known to the client in
the online phase, and need to remain private from the server. Our main result
is a new protocol with desirable privacy, security and efficiency properties. In
what follows, we give a formal statement of our result, an asymptotic and a con-
crete efficiency comparison with previous protocols in the same input scenario,
an informal description of the ideas behind the protocol, a formal description
of the protocol and a proof of the protocol’s correctness, privacy and security
properties. Formally, our second protocol satisfies the following

Theorem 2. Let e be a pairing, as defined in Section 2, let σ be its computa-
tional security parameter, and let λ be a statistical security parameter. There
exists (constructively) a client-server protocol (C, S) for delegating the compu-
tation of e, when inputs A and B are both privately known to C in the online
phase which satisfies 1-correctness, 2−λ-security, 0-privacy, and efficiency with
parameters (tF , tS , tP , tC , cc,mc), where
– tF = pT , tS = 4 pT and tP = 2 pT + 4m2(σ) + 3 il;
– tC ≤ 2 a1 + 2 a2 + 3m1(σ) +m2(σ) +m2(λ) + 4mT + eT (λ) + 3 tM ;
– cc = 3 values in G1 + 4 values in G2 + 4 values in GT and mc = 2.

The main takeaway from this theorem is that C can privately, securely and
efficiently delegate to S the computation of a bilinear pairing in the input sce-
nario where both A and B are only available to C, not before the online phase.
In particular, in the online phase C only performs 1 exponentiation to a λ-bit
(thus, shorter) exponent in GT , 3 scalar multiplications in G1, 2 scalar multipli-
cations in G2, of which 1 with a λ-bit scalar, and other lower-order operations.
See Table 3 for a concrete comparison with closest previous work, also showing
estimated ratios of C’s online runtime to a non-delegated pairing calculation
ranging between 0.425 and 0.843 depending on the curve used. Additionally, C
only computes 2 pairings in the offline phase, S only computes 4 pairings, and
C and S only exchange 2 messages containing 11 group values.

Protocol(s) description. In our investigation, we actually evaluated 5 proto-
cols, by past works, including ours, possibly combined with our result in Sec-
tion 3, and 1 being new. In what follows, we briefly and informally describe the
first 4 protocols, and then formally describe the new protocol, which happens to
be the only one where C’s online runtime is smaller than a non-delegated com-
putation, and which proves Theorem 2. In Table 3 we give a detailed comparison
of all protocols, with respect to C’s online runtime.

Protocol Π0. This protocol combines a randomization technique appeared, for
instance, in [7], with our pairing delegation protocol from Section 3. C randomly
chooses r, s ∈ Zl, computes rA, sB and sends them to S. Then C and S run a
protocol such as the one from Section 3 in the (A′ public online, B′ public online)
input scenario, where A′ = rA and B′ = sB. Finally, A computes the desired
result e(A,B) as e(A′, B′)1/rs.

9



Protocol Π1. This protocol has been mentioned in our previous paper [10] and
combines a simple randomization technique with pairing delegation protocols for
different input scenarios in that same paper. In the offline phase, C randomly
chooses r ∈ Zl and U ∈ G1 and set s = r−1 mod l. Then C and S run a protocol
in the (A′ public online, B′ public online) input scenario, where A′ = rA and
B′ = r−1(B − U), and a protocol in the (A′′ private online, B′′ private offline)
input scenario, where A′′ = A and B′′ = U . Finally, A computes the desired
result e(A,B) as e(A′, B′)/(e(A′′, B′′)).

Protocol Π2. This protocol combines known input randomization techniques
used, for instance, in [8, 18], with pairing delegation protocols for different input
scenarios in [10]. In the offline phase, C randomly chooses points Ra, Rb and
computes e(Ra, Rb). In the online phase, C sets Ar = A + Ra, Br = B + Rb
and sends Ar, Br to S, which computes and sends e(Ar, Br) to C. Then, C
uses the state-of-the-art protocol in [10] for the input scenario (A′ private of-
fline, B′ private online), where A′ = Ra, B

′ = B, to delegate the computa-
tion of e(Ra, B), and the state-of-the-art protocol in [10] for the input scenario
(A′′ private online, B′′ private offline), where A′′ = A,B′′ = Rb, to delegate
the computation of e(A,Rb). Finally, C computes the desired result e(A,B) as
e(Ar, Br)/(e(Ra, B) · e(A,Rb) · e(Ra, Rb)).
Protocol Π3. This protocol is a variant of protocol Π1 where the subprotocol for
the (A′ public online, B′ public online) is realized using our improved protocol
in Section 3.

Our final and most efficient protocol. Note that all of the previously discussed
4 protocols combine some input randomization technique with one or more sub-
protocols for different input scenarios. We observe that there is some inherent
inefficiency in such approaches, as the subprotocols typically compute further
input randomizations. In our final protocol, we bypass inefficiencies due to such
compositions, and design a new probabilistic test, tailored to this specific input
scenario, which involves computation of 4 pairings from S, all with efficiently
masked variants of inputs A,B. Masks are chosen carefully so to achieve various
cancellation effects and to allow efficient verification from C, while especially
reducing the use of exponentiations in GT to only 1 exponentiation to a short,
λ-bit, exponent, as well as scalar multiplications in G2, to only 1.

A formal description follows.

Offline Input to C and S: 1σ, 1λ, desc(e)

Offline phase instructions:

1. C randomly chooses U0, U1 ∈ G1, P0, P1 ∈ G2, c ∈ {1, . . . , 2λ}, r0, r1, r2 ∈ Z∗l
2. C sets

– vi := e(Ui, Pi), Qi := r̂i · Pi where r̂i = r−1i mod l, for i = 0, 1
– r̂2 := r−12 , Q2,1 = −r2 · P0 and Q3,1 = r2 · P1

3. C sets ov = (c, r0, r1, r2, r̂2, U0, U1, P0, P1, Q0, Q1, Q2,1, Q3,1, v0, v1)

Online Input to C: A ∈ G1, B ∈ G2, and ov

Online phase instructions:

10



1. C sets

– Z0 := r0(A− U0), Z1 := r1(A− U1), Z2 := r̂2 ·A and
– Q2,0 = Q3,0 := r2 ·B, Q2 := Q2,0 +Q2,1, Q3 := c ·Q3,0 +Q3,1

C sends Z0, Z1, Z2, Q0, Q1, Q2, Q3 to S
2. S computes

w0 := e(Z0, Q0), w1 := e(Z1, Q1), w2 := e(Z2, Q2), w3 := e(Z2, Q3)
S sends w0, w1, w2, w3 to C

3. (Membership Test:) C checks that w0, w1, w2 ∈ GT
C computes y = w0 · w2 · v0
(Probabilistic Test:) C checks that w3 = (y)c · w1 · v1

(with this test, C implicitly checks that w3 ∈ GT )
If any of these tests fails, C returns ⊥ and the protocol halts
C returns y

Properties of the protocol (C, S): The efficiency properties are verified by
protocol inspection. In particular, as for C’s online runtime, note that the proba-
bilistic test requires 1 exponentiation in GT to a short, λ-bit, exponent; the com-
putation of Z0, Z1, Z2 requires 3 scalar multiplications in G1; the computation of
Q0, Q1, Q2, Q3 requires 2 multiplications in G2, of which 1 is by a short, λ-bit,
scalar. Other parts of these computations involve lower-order operations, such
as 4 additions/subtractions in G1 or G2, 4 multiplications and a small number of
Frobenius-based simplifications in GT . In Table 3 we compare our main protocol
with protocols Π0, . . . ,Π3 as well as previous work. There, the estimated ratios
of C’s online runtime to a non-delegated pairing calculation is shown to range
between 0.425 and 0.843 depending on the curve used.

Table 3. Protocols comparison in the input scenario with private A and B. (The
expression of tC only includes higher-order functions eT ,m1,m2. The estimated ratio
tC/tF also counts terms based on functions a1, a2,mT , tM and uses λ = 128.)

Protocols tC
Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[8] §4.1 5 eT (σ) +m2(σ) 2.606 2.182 1.453 2.337

[18] §3 3 eT (σ) +m2(σ) +m1(σ) 1.719 1.439 0.956 1.517

[7] §5.1 2 eT (σ) + 2m2(σ) + 2m1(σ) 1.658 1.391 0.917 1.390

[10] Π1
3 eT (λ) +m2(σ) +m2(λ)
+3m1(σ) + 2m1(λ)

1.161 0.823 0.578 0.697

This paper: Π0
eT (σ) + eT (λ) +m2(σ)
+m2(λ) + 2m1(σ)

1.155 0.911 0.617 0.874

This paper: Π2
3 eT (λ) +m2(σ) + 2m2(λ)
+2m1(σ) +m1(λ)

1.072 0.760 0.550 0.694

This paper: Π3
2 eT (λ) +m2(σ) + 2m2(λ)
+1m1(σ) +m1(λ)

1.002 0.729 0.502 0.604

This paper §4
eT (λ) +m2(σ)
+m2(λ) + 3m1(σ)

0.843 0.635 0.425 0.511

11



The correctness property follows by showing that if C and S follow the protocol,
C always outputs y = e(A,B). We first show that if C returns y, then this
returned value y is the correct output e(A,B). This is proved as follows:

y = w0 · w2 · v0 = e(Z0, Q0) · e(Z2, Q2) · e(U0, P0)

= e(r0(A− U0), r−10 P0) · e(r−12 A, r2(B − P0)) · e(U0, P0)

= e(A− U0, P0) · e(A,B − P0) · e(U0, P0)

= e(A,P0) · e(U0, P0)−1 · e(A,B) · e(A,P0)−1 · e(U0, P0) = e(A,B).

We now show that the 2 tests performed by C are always passed. The member-
ship test is always passed by the pairing definition. To see that the probabilistic
test is always passed, first note that Q2 = Q2,0 + Q2,1 = r2(B − P0), and
Q3 = Q3,0 +Q3,1 = r2(c ·B + P1). Then we have that

yc · w1 · v1 = e(A,B)c · e(Z1, Q1) · e(U1, P1)

= e(A,B)c · e(r1(A− U1), r−11 · P1) · e(U1, P1)

= e(A,B)c · e(A− U1, P1) · e(U1, P1)

= e(A, c ·B) · e(A,P1) · e(U1, P1)−1 · e(U1, P1)

= e(r−12 ·A, r2(c ·B + P1)) = e(Z2, Q3) = w3

This implies that C never returns ⊥, and thus always returns y = e(A,B).

The privacy property of the protocol against any malicious S follows by
observing that C’s only message (Z0, Z1, Z2, Q0, Q1, Q2, Q3) to S does not leak
any information about C’s inputs A,B. To prove this, we show the stronger
property (also used later to show the security property of (C, S)) that for any
A,B, c, the message sent by C in the protocol is a uniformly distributed 7-tuple
in G31 × G42 . Towards proving this latter property, recall that G1,G2 are cyclic
groups, and denoting as G1 a generator for G1, and as G2 a generator for G2, we
can denote as a, b, u, z0, z1, z2, p0, p1, q0, q1, q2, q3 the values in Zl such that

– A = aG1, B = bG2

– P0 = p0G2, P1 = p1G2

– Z0 = z0G1, Z1 = z1G1, Z2 = z2G1

– Q0 = q0G2, Q1 = q1G2, Q2 = q2G3, Q3 = q3G3.

Note that C’s message can be then written as

(Z0, Z1, Z2, Q0, Q1, Q2, Q3) = (z0G1, z1G1, z2G2, q0G2, q1G2, q2G3, q3G3),

and, since G1,G2 are cyclic groups of prime order l, to prove the above stronger
property, it suffices to show that the 7-tuple (z0, z1, z2, q0, q1, q2, q3) is uniformly
distributed in (Z∗l )3 × Z4

l , for all a, b ∈ Zl and any c ∈ {0, . . . , 2λ}. The latter is
proved as follows:

– z0 is uniformly distributed in Zl since so is u0 and z0 = r0(a− u0) mod l;

12



– z1 is uniformly distributed in Zl, even conditioned on z0, since so is u1 and
z1 = r1(a− u1) mod l;

– z2 is = 0 if a = 0 or else is uniformly distributed in Z∗l , even conditioned on
z0, z1, since so is r2 and z2 = r−12 a mod l;

– q0 is = 0 if p0 = 0 or else is uniformly distributed in Z∗l , even conditioned
on z0, z1, z2, since so is r0 and q0 = r−10 p0 mod l

– q1 is = 0 if p1 = 0 or else is uniformly distributed in Z∗l , even conditioned
on q0, z0, z1, z2, since so is r1 and q1 = r−11 p1 mod l;

– q2 is uniformly distributed in Zl, even conditioned on q0, q1, z2, z0, z1, since
so is p0 and q2 = r2(b− p0) mod l;

– q3 is uniformly distributed in Zl, even conditioned on q0, q1, q2, z2, z0, z1,
since so is p1 and q3 = r2(cb+ p1) mod l.

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that S convinces C to output
a y such that y 6= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts, which we later prove:

1. the tuple (Z0, Z1, Z2, Q0, Q1, Q2, Q3) leaks no information about c to S;
2. for any S’s message (w0, w1, w2, w3) different than what would be returned

according to the protocol instructions, there is only one value of c for which
(w0, w1, w2, w3) satisfies both the membership and the probabilistic test in
step 3 of the protocol;

3. for any S’s message (w0, w1, w2, w3) different than what would be returned
according to the protocol instructions, the probability that (w0, w1, w2, w3)
satisfies the probabilistic test in step 3 of the protocol is ≤ 2−λ.

The proof of Fact 1 follows from the stronger property established when
proving the protocol’s privacy property.

Towards proving Fact 2, let (w0, w1, w2, w3) be the values that would be
returned by S according to the protocol, and assume a malicious algorithm Adv,
corrupting S returns a different pair (w′0, w

′
1, w

′
2, w

′
3). Because GT is cyclic, we

can consider a generator g for GT and write wi = gai , for i = 0, 1, 2, 3. Note that if
the membership and probabilistic tests are satisfied, all values in (w′0, w

′
1, w

′
2, w

′
3)

are verified to be in GT . Then we can write

∀ i = 0, 1, 2, 3, ∃ui ∈ Zl w′i = gui · wi such that for some ui 6= 0.

Now, assume wlog that ui 6= 0 mod l and consider the following equivalent re-
writings of the probabilistic test, via variable substitutions and simplifications:

w′3 = yc · w′1 · v1
w′3 = (w′0 · w′2 · v0)c · w′1 · v1

gu3 · w3 = (gu0 · w0 · gu2 · w2 · v0)c · gu1 · w1 · v1
gu3 · w3 = gc(u0+u2)+u1 · (w0 · w2 · v0)c · w1 · v1
gu3 · w3 = gc(u0+u2)+u1 · yc · w1 · v1

13



gu3 = gc(u0+u2)+u1

u3 = c(u0 + u2) + u1 mod l,

where the 4th equality follows since w3 = yc · w1 · v1. Now, if there exist two
distinct c1 and c2 such that

u3 = c1(u0 + u2) + u1 mod l and u3 = c2(u0 + u2) + u1 mod l

then (u0 + u2)(c1 − c2) = 0 mod l which implies either c1 − c2 = 0 mod l
(i.e. c1 = c2 and c is unique) or u0 + u2 = 0 mod l (i.e. u0 = −u2 mod l). If
u0 = −u2 mod l then y = w′0 ·w′2 ·v0 = gu0 ·w0 ·gu1 ·w2 ·v0 = w0 ·w2 ·v0 = e(A,B),
and thus S is honest. If S is not honest then c1 = c2 and this proves Fact 2.

Towards proving Fact 3, note that, by Fact 1, no information about c is
leaked by C’s message (Z0, Z1, Z2, Q0, Q1, Q2, Q3). This implies that all values in
{1, . . . , 2λ} are still equally likely for c even when conditioning over C’s message.
Then, by using Fact 2, the probability that S’s message (w0, w1, w2, w3) satisfies
the probabilistic test, is 1 divided by the number 2λ of values of c that are still
equally likely even after conditioning over C’s message. This proves Fact 3.

5 Conclusions

Pairings are important primitive operations in many public-key cryptosystems
and, more generally, cryptographic protocols (see, e.g., [16, 4, 1, 3, 5, 14, 19]). In
this paper we studied pairing delegation to a single, possibly malicious, server,
in the input scenario where both inputs are not available until the online phase.
We proposed new protocols in the scenario where (a) both inputs are publicly
available; and (b) both inputs are known to the client but should remain pri-
vate from the server. We showed the first protocol in case (b) which improves
the client’s online runtime with respect to non-delegated computation for all 4
practical curves for which pairing benchmark runtimes are reported in [6]. Both
our protocols only require client and server to communicate a constant number
(specifically, 6 and 11) of group elements. Indeed, exchanged communication is
another important performance metric when analyzing the efficiency of security
protocols (see, e.g., [20]). More generally, when implementing such protocols
in practical applications, an overall analysis of the device’s energy expenditure
should at least take into account device characteristics and usage patterns in the
intended application, together with protocol runtime and communication.

References

1. S.S. Al-Riyami, K.G. Paterson, Certificateless Public Key Cryptography. In: Laih
C.S. (eds) Advances in Cryptology - ASIACRYPT 2003.

2. P.S.L.M. Barreto, C. Costello, R. Misoczki, M. Naehrig, G.C.C.F. Pereira, G. Zanon,
Subgroup security in pairing-based cryptography. In: Lauter K., Rodŕıguez-Henŕıquez
F. (eds) Progress in Cryptology – LATINCRYPT 2015.

14



3. D. Boneh, M. Franklin, Identity-based Encryption from the Weil Pairing. In: Proc.
of CRYPTO 2001. LNCS vol. 2139, Springer.

4. D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public Key Encryption with
Keyword Search. In: Proc. of EUROCRYPT 2004. LNCS vol. 3027, Springer.

5. D. Boneh, B. Lynn, H. Shacham, Short Signatures from the Weil Pairing. In: Boyd
C. (eds) Advances in Cryptology — ASIACRYPT 2001. LNCS vol 2248. Springer.

6. J.W. Bos, C. Costello, M. Naehrig, Exponentiating in pairing groups. In: Lange T.,
Lauter K., Lisoněk P. (eds) SAC 2013. LNCS vol 8282. Springer.

7. S. Canard, J. Devigne, O. Sanders, Delegating a pairing can be both secure and
efficient. In: Boureanu I., Owesarski P., Vaudenay S. (eds) Applied Cryptography
and Network Security. ACNS 2014. LNCS vol 8479. Springer.

8. B. Chevallier-Mames, J.S. Coron, N. McCullagh, D. Naccache, M. Scott, Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive. In: Proc. of CARDIS
2010. LNCS vol 6035. Springer. Also IACR EPrint 2005/150.

9. C. Chevalier, F. Laguillaumie, D. Vergnaud, Privately Outsourcing Exponentiation
to a Single Server: Cryptanalysis and Optimal Constructions. In: Proc. of Computer
Security – ESORICS 2016. LNCS vol. 9878. Springer.

10. G. Di Crescenzo, M. Khodjaeva, D. Kahrobaei, V. Shpilrain, Secure and Efficient
Delegation of Elliptic-Curve Pairing. In: Proc. of ACNS 2020. LNCS, vol 12146.
Springer, Cham.

11. R. Gennaro, C. Gentry, B. Parno, Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In: Proc. of CRYPTO 2010, LNCS 6223, pp.
465–482.

12. M. Girault, D. Lefranc, Server-aided verification: Theory and practice. In: Roy,
B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623.

13. Guillevic, A., Vergnaud, D., Algorithms for outsourcing pairing computation. In:
Proc. of CARDIS 2014, LNCS vol. 8968. Springer.

14. F. Hess, Efficient Identity Based Signature Schemes Based on Pairings. In: Nyberg
K., Heys H. (eds) Selected Areas in Cryptography. SAC 2002.

15. S. Hohenberger, A. Lysyanskaya, How to securely outsource cryptographic compu-
tations. In: Proc. of TCC 2005, pp. 264–282, Springer.

16. Antoine Joux, A One Round Protocol for Tripartite Diffie-Hellman. In: Proc. of
ANTS 2000, pp. 385-394.

17. E.J. Kachisa, E.F. Schaefer, M. Scott, Constructing Brezing-Weng pairing friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith S.D., Paterson
K.G. (eds) Pairing-Based Cryptography – Pairing 2008. LNCS vol. 5209. Springer.

18. B.G. Kang, M.S. Lee, J.H. Park, Efficient delegation of pairing computation. In:
IACR Cryptology ePrint Archive, n. 259, 2005.

19. J.K. Liu, M.H. Au, W. Susilo, Self-generated-certificate publickey cryptography and
certificateless signature/encryption schemein the standard model. In: Proc. ACM
Symp. on Information, Computer and Communications Security. ACM Press (2007).

20. C. Markantonakis, Is the Performance of Smart Card Cryptographic Functions the
Real Bottleneck?, in Proc. of IFIP/SEC 2001: 77-92

21. M. Scott, Unbalancing pairing-based key exchange protocols. In: IACR Cryptology
ePrint Archive, n. 688, 2013.

22. F. Vercauteren, Optimal Pairings. In: IEEE Transactions on Information Theory,
vol. 56, no. 1, pp. 455–461, Jan. 2010.

23. D. Vergnaud, Secure Outsourcing in Discrete-Logarithm-Based and Pairing-Based
Cryptography. In Proc. of WISTP 2018: 7-11.

24. A. Yao, Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp. 160–
168, 1982.

15


