CONSTANT TIME HARDWARE IMPLEMENTATION OF STREAMLINED NTRU PRIME

CARDIS PRESENTATION ADRIAN MAROTZKE NOVEMBER 2020

- Introduction to Streamlined NTRU Prime
- Algorithm description
- Implementation overview
- Implementation details
- Conclusion & future work

Streamlined NTRU Prime – A primer

- Alternate finalist in round 3 of NIST PQC Standardization
- Key Encapsulation Mechanism
- Lattice based scheme
- Ancestry: 1998 NTRU, with several improvements

Streamlined NTRU Prime – A primer

• Reducing attack surface at low cost :

Streamlined NTRU Prime – A primer

- Polynomials with all coefficients $\in \{-1, 0, 1\}$ called *small*.
- Polynomials have weight w iff exactly w coefficients are non-zero
- Polynomials are short iff they are both small and have weight w
- $Hash_a(x)$: SHA-512 of x, prefixed by single byte value a
- Encode/Decode: Field Elements $\leftarrow \rightarrow$ Byte strings

CORE-SVP Security Level	p	q	w
2 ¹²⁹	653	4621	250
2 ¹⁵³	761	4591	286
2 ¹⁷⁵	857	5167	322

- Introduction to Streamlined NTRU Prime
- Algorithm description
- Implementation overview
- Implementation details
- Conclusion & future work

Key Generation

Hamburg University of Technology

Encapsulation

Hamburg University of Technology

Decapsulation

- Introduction to Streamlined NTRU Prime
- Algorithm description
- Implementation overview
- Implementation details
- Conclusion & future work

Overview

- Hardware Implementation of Streamlined NTRU Prime
- All operations are supported, all round 2 parameter sets
- For small embedded systems, e.g. smartcards
- Source code: https://github.com/AdrianMarotzke/SNTRUP

Overview

11

All numbers are for parameter set SNTRUP761 and Xilinx Zynq
 ZCU102

Operation		Clock	Cycles	@ 269	@ 269 MHz		
Key generation		1 30)4 742	48	4847 us		
Encap	sulation	142 238		52	528 us		
Decapsulation		259 945		965 us			
	Slices	LUT	FF	BRAM	DSP		
Paper	1841	9528	7803	14	19		
New	1596	8933	5221	13	19		

- Introduction to Streamlined NTRU Prime
- Algorithm description
- Implementation overview
- Implementation details
- Conclusion & future work

Inversion during Key Generation

• Extended GCD algorithm [1] for inversion

 $\mathcal{R}/q = (\mathbb{Z}/q)[x]/(x^p - x - 1)$

 $\mathcal{R}/3 = (\mathbb{Z}/3)[x]/(x^p - x - 1)$

- Significantly faster than e.g. inversion using Fermat's little theorem
- Key Gen cycle count is dominated by the two polynomials inversion (89.6%)

Multiplication

- Using NTT in NTRU Prime is not straightforward
- Mixture of Karatsuba and Schoolbook multiplication
- 78 132 cycles with 1 Karatsuba layer
- $\mathcal{R}/q * \mathcal{R}/3$: Coefficients are 13 bit and 2 bit (-1, 0, 1)
- 13 bit * (-1, 0, 1) is essentially nothing
- Schoolbook multiplication is very resource light
- $\mathcal{R}/3 * \mathcal{R}/3$ is performed by same circuit, with a modulo 3 at the end

Generation short polynomials

- No sampling needed, instead:
- Take p 32-bit random integers
- Of the first w numbers, modify last 2 bit so they are always even
- Of the rest, set to odd
- Then sort with a constant time algorithm

 Constant time with regards to input
 Sorting network from [2]
- Only use last two bits, and subtract by 1
- 50 927 cycles

[2] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal. "NTRU Prime: reducing attack surface at low cost". International Conference on Selected Areas in Cryptography

Encoding & Decoding

- Trivial in $\mathcal{R}/3 \rightarrow$ Simple shift register
- \mathcal{R}/q encoder: bitshift, 16-bit addition, 16-bit multiplication
- \mathcal{R}/q decoder requires 32-by-16 division with remainder
- But: divisors can be precalculated \rightarrow 42 in total
- Replaced with division by constant \rightarrow multiplication & bit shift
- Divisors are not secret dependent
- Division by 4591:

 $y = x * 3831885438 \gg (13 + 31), 0 \le x \le 2^{32}$ r = x - y * 4591

SHA-512

- Hashing time is short (325 cycles per 1024-bit block)
- But: the SHA-512 used to be the single largest module
- Some optimization since
- Optimal sized SHA-512 implementation is critical
 Bonus if your crypto coprocessor already has SHA-512

Constant Time Implementation

- All operations are constant time
- Sorting allows constant time generation of short polynomials
- Special care to:
 - -Check if the polynomial r' has exactly w non-zero coefficients
 - -Ciphertext equivalence check
- No side channels through decryption failures
- No further protections against advanced side channel attacks

18

Comparison

19

- First full implementation
- [1] did not have key generation or decoding

	Slices	LUT	FF	BRAM	DSP	Clock	Encap	Decap
This	1 596	8 933	5 221	13	19	269 MHz	528 us	965 us
No key gen/ decoding	1 028	5 743	3 823	8	3	280.2 MHz	483 us	901 us
[1]	10 319	70 066	38 144	9	0	263 MHz	56.3 us	53.3 us

[1] Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani, Duc Tri Nguyen, and Kris Gaj. Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware Codesign Approaches. Cryptology ePrint Archive, Report 2020/795. https: //eprint.iacr.org/2020/795. 2020.

- Introduction to Streamlined NTRU Prime
- Algorithm description
- Implementation overview
- Implementation details
- Conclusion & future work

Conclusion & Future work

- Lightweight implementation is possible
 Suitable for embedded systems
- New round 3 parameter sets
- Optimal SHA-512 implementation
- Advanced side channel protections
- Suitability of NTT multiplication
- Batch inversion using Montgomery Trick

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.