
CARDIS PRESENTATION

ADRIAN MAROTZKE

NOVEMBER 2020

CONSTANT TIME HARDWARE

IMPLEMENTATION OF

STREAMLINED NTRU PRIME

1

Agenda

• Introduction to Streamlined NTRU Prime

• Algorithm description

• Implementation overview

• Implementation details

• Conclusion & future work

1

2

Streamlined NTRU Prime – A primer

• Alternate finalist in round 3 of NIST PQC Standardization

• Key Encapsulation Mechanism

• Lattice based scheme

• Ancestry: 1998 NTRU, with several improvements

3

Streamlined NTRU Prime – A primer

• Reducing attack surface at low cost :

No decryption failures

No cyclotomic rings

Key confirmation hash

No Gaussian sampling. Rounding

of ciphertexts, fixed weight secrets

ℛ/𝑞 = (ℤ/𝑞)[𝑥]/(𝑥𝑝 − 𝑥 − 1)
ℛ/3 = (ℤ/3)[𝑥]/(𝑥𝑝 − 𝑥 − 1)

𝑝, 𝑞 both prime

Hash public key + secret input,

simplifies security analysis

4

Streamlined NTRU Prime – A primer

• Polynomials with all coefficients ∈ {−1, 0, 1} called small.

• Polynomials have weight 𝓌 iff exactly 𝓌 coefficients are non-zero

• Polynomials are short iff they are both small and have weight 𝓌

• Hasha(x): SHA-512 of x, prefixed by single byte value a

• Encode/Decode: Field Elements → Byte strings

CORE-SVP Security

Level 𝑝 𝑞 𝓌

2129 653 4621 250

2153 761 4591 286

2175 857 5167 322

5

Agenda

• Introduction to Streamlined NTRU Prime

• Algorithm description

• Implementation overview

• Implementation details

• Conclusion & future work

5

6

Key Generation

small 𝑔 short 𝑓

1/𝑔 ∈ ℛ/3 1/(3𝑓) ∈ ℛ/𝑞

ℎ = 𝑔/(3𝑓) ∈ ℛ/𝑞
𝜌 ∈ {0, … , 255}(𝑝+3)/4

Public key: Encode(ℎ)

Private key: Encode(𝑓) | Encode(1/𝑔) | Encode(ℎ) | 𝜌 | 𝑝𝑘ℎ𝑎𝑠ℎ

𝑝𝑘ℎ𝑎𝑠ℎ = hash4(Encode(h))

7

Encapsulation

Public key: Encode(ℎ) short 𝑟

ℎ𝑟 ∈ ℛ/𝑞

𝑐 = 𝑅𝑜𝑢𝑛𝑑(ℎ𝑟)
Nearest multiple of 3

𝑟ℎ𝑎𝑠ℎ = hash3(Encode(𝑟))

𝑝𝑘ℎ𝑎𝑠ℎ = hash4(Encode(h))

𝐶𝑜𝑛𝑓𝑖𝑟𝑚 = hash2(𝑟ℎ𝑎𝑠ℎ|𝑝𝑘ℎ𝑎𝑠ℎ)

Ciphertext 𝐶 = Encode(𝑐) | 𝐶𝑜𝑛𝑓𝑖𝑟𝑚

Shared secret: hash1(𝑟ℎ𝑎𝑠ℎ, 𝐶)

8

Decapsulation

Private key: (Encode(𝑓) |

Encode(1/𝑔) | Encode(ℎ)

| 𝜌 | 𝑝𝑘ℎ𝑎𝑠ℎ)

Ciphertext 𝐶 = Encode(𝑐) | 𝐶𝑜𝑛𝑓𝑖𝑟𝑚

3𝑓𝑐 ∈ ℛ/𝑞

e = mod(3𝑓𝑐, 3) ∈ ℛ/3

r′ = 𝑒 ∗ 1/𝑔 ∈ ℛ/3
If r′ does NOT have weight 𝓌, set

first 𝓌 coefficients to 1, rest to 0

𝐶′ = 𝐸𝑛𝑐𝑎𝑝(ℎ, 𝑟′)

If 𝐶 = 𝐶′, then output shared secret

hash1(hash3(Encode(𝑟′)) | 𝐶), otherwise

output hash1(hash3(𝜌) | 𝐶)

9

Agenda

• Introduction to Streamlined NTRU Prime

• Algorithm description

• Implementation overview

• Implementation details

• Conclusion & future work

9

10

Overview

• Hardware Implementation of Streamlined NTRU Prime

• All operations are supported, all round 2 parameter sets

• For small embedded systems, e.g. smartcards

• Source code: https://github.com/AdrianMarotzke/SNTRUP

10

11

Overview

• All numbers are for parameter set SNTRUP761 and Xilinx Zynq

ZCU102

11

Operation Clock Cycles @ 269 MHz

Key generation 1 304 742 4847 us

Encapsulation 142 238 528 us

Decapsulation 259 945 965 us

Slices LUT FF BRAM DSP

Paper 1841 9528 7803 14 19

New 1596 8933 5221 13 19

12

Agenda

• Introduction to Streamlined NTRU Prime

• Algorithm description

• Implementation overview

• Implementation details

• Conclusion & future work

12

13

Inversion during Key Generation

• Extended GCD algorithm [1] for inversion

• Significantly faster than e.g. inversion using Fermat’s little theorem

• Key Gen cycle count is dominated by the two polynomials inversion

(89.6%)

13

[1] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd

computation and modular inversion." IACR Transactions on Cryptographic

Hardware and Embedded Systems (2019)

ℛ/𝑞 = (ℤ/𝑞)[𝑥]/(𝑥𝑝 − 𝑥 − 1)

ℛ/3 = (ℤ/3)[𝑥]/(𝑥𝑝 − 𝑥 − 1)

14

Multiplication

• Using NTT in NTRU Prime is not straightforward

• Mixture of Karatsuba and Schoolbook multiplication

• 78 132 cycles with 1 Karatsuba layer

• ℛ/𝑞 ∗ ℛ/3 : Coefficients are 13 bit and 2 bit (-1, 0, 1)

• 13 bit ∗ (-1, 0, 1) is essentially nothing

• Schoolbook multiplication is very resource light

• ℛ/3 ∗ ℛ/3 is performed by same circuit, with a modulo 3 at the end

14

15

Generation short polynomials

• No sampling needed, instead:

• Take 𝑝 32-bit random integers

• Of the first 𝓌 numbers, modify last 2 bit so they are always even

• Of the rest, set to odd

• Then sort with a constant time algorithm

−Constant time with regards to input

−Sorting network from [2]

• Only use last two bits, and subtract by 1

• 50 927 cycles

15

[2] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and

Christine van Vredendaal. “NTRU Prime: reducing attack surface at low cost”.

International Conference on Selected Areas in Cryptography

16

Encoding & Decoding

• Trivial in ℛ/3→ Simple shift register

• ℛ/𝑞 encoder: bitshift, 16-bit addition, 16-bit multiplication

• ℛ/𝑞 decoder requires 32-by-16 division with remainder

• But: divisors can be precalculated → 42 in total

• Replaced with division by constant → multiplication & bit shift

• Divisors are not secret dependent

• Division by 4591:

16

y = 𝑥 ∗ 3831885438 ≫ 13 + 31 , 0 ≤ 𝑥 ≤ 232

r = 𝑥 − y ∗ 4591

17

SHA-512

• Hashing time is short (325 cycles per 1024-bit block)

• But: the SHA-512 used to be the single largest module

• Some optimization since

• Optimal sized SHA-512 implementation is critical

−Bonus if your crypto coprocessor already has SHA-512

17

18

Constant Time Implementation

• All operations are constant time

• Sorting allows constant time generation of short polynomials

• Special care to:

−Check if the polynomial r′ has exactly 𝓌 non-zero coefficients

−Ciphertext equivalence check

• No side channels through decryption failures

• No further protections against advanced side channel attacks

18

19

Comparison

19

Slices LUT FF BRAM DSP Clock Encap Decap

This 1 596 8 933 5 221 13 19 269 MHz 528 us 965 us

No key gen/

decoding

1 028 5 743 3 823 8 3 280.2 MHz 483 us 901 us

[1] 10 319 70 066 38 144 9 0 263 MHz 56.3 us 53.3 us

• First full implementation

• [1] did not have key generation or decoding

[1] Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani,
Duc Tri Nguyen, and Kris Gaj. Implementation and Bench-
marking of Round 2 Candidates in the NIST Post-Quantum Cryptogra-
phy Standardization Process Using Hardware and Software/Hardware Co-
design Approaches. Cryptology ePrint Archive, Report 2020/795. https:
//eprint.iacr.org/2020/795. 2020.

20

Agenda

• Introduction to Streamlined NTRU Prime

• Algorithm description

• Implementation overview

• Implementation details

• Conclusion & future work

20

21

Conclusion & Future work

21

• Lightweight implementation is possible

−Suitable for embedded systems

• New round 3 parameter sets

• Optimal SHA-512 implementation

• Advanced side channel protections

• Suitability of NTT multiplication

• Batch inversion using Montgomery Trick

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

