Low-Cost Body Biasing Injection
(BBI) Attacks on WLCSP Devices

Colin O’Flynn

Dalhousie University / NewAE

https://github.com/newaetech/chipjabber-basicbbi

Popular Ways to Inject Faults

Alphanov

 {Many publications

. L
LCISGF FI Riscure EMFI tool

ChipSHOUTER
Langer EMFI tool
Multiple open-source tools

\ 4

* Electromagnetic

* Voltage FI

° ClOCk Gli’rchlng " Many pulse generator vendors

Riscure Tooling

ChipWhisperer-Lite /Pro

Mux-based solutions (multiple designs)
. Other open-source designs.

\

Same as voltage-Fl...
Unloopers from smart card days

What happened to Body Biasing Injection (BBI)?

*Philippe Maurine. Techniques for EM Fault Injection: Equipments and Experimental Results. FDTC 2012: Workshop
on Fault Diagnosis and Tolerance in Cryptography. 9 Sept. 2012.

*Philippe Maurine, Karim Tobich, Thomas Ordas, Pierre Yvan Liardet. Yet Another Fault Injection Technique: by
Forward Body Biasing Injection. YACC'2012: Yet Another Conference on Cryptography, Sep 2012, Porquerolles Island,
France.

eKarim Tobich, Philippe Maurine, Pierre Yvan Liardet, Mathieu Lisart, Thomas Ordas. Voltage Spikes on the Substrate
to Obtain Timing Faults. 2013 Euromicro Conference on Digital System Design, Los Alamitos, CA, 2013, pp. 483-486.

*Noemie Beringuier-Boher, Marc Lacruche, David El-Baze, Jean-Max Dutertre, Jean-Baptiste Rigaud, Philippe

Maurine. Body Biasing Injection Attacks in Practice. In Proceedings of the Third Workshop on Cryptography and
Security in Computing Systems (CS2 '16), 2016.

CARDIS 2020 3

Body Biasing Injection - Theory

‘ - Inject here!

=
o]
-
aos 1ake| |eas D15 nr
3

- aos
S03L3d o

™ 19Ake| dojs ym@ Jis

ade] Ja111Rq NRLRL

10349

siBul| Ny pue nJ 4)

dwng Japjos
(21S) 3piqsed uodHs [95-4'P93I

/ pua-3oeq

(Q0s) maRIp Uo-uds []

*(1500) 2py51p e Il

(0I5 "9Pa SOAL) PO UaSlS [
0I5 D) S5 Uasis psdopun g
(15-fod) uoansAiod Il
(15 uoous [l

JBuibeyoed pasueapy,

1s-dil su]

Example - Previous Setups

the probe tip and the XYZ stage
Figure 1: A backside opened micro-controller L L3 &

PC
user
&
.~
)) ! M
Control Chain Injection Chain Acquisition Chain XYZ stage— ~—probe tip holder
Motorized Stage - Y, ‘*prObe tip
Control Unit Pulse generator LX | T =T)
Position X : ighii
PositionY O weighing scale 7 sample
PositionZ .
Figure 3: Schematic view of the attacked sample,
Card Reader o
il VPS vdd Gnd

Vvdd, Gnd s -
tivity maps. Finally, to have a fully automated bench, a

controlled Z axis is used to raise the tip and put it back af-
ter the XY move. The main difficulty in this task is to have
a good Z axis repeatability. Indeed, the probe tip is made
from Tungsten which is a hard material. Thus, the probe
tip can easily damage the Device Under Test (DUT) if it is
lowered back too far after being lifted and moved. Also, if
the probe diameter is very small (<100 pm for example), the
probe tip itself can be bent or broken. In order to address
this, a weighing scale is added under the DUT to measure
the pressure applied by the probe on the substrate. A weight
Figure 2: A custom micro-probe with a 0.25 ym di- variation of 80 g approximately achieves satisfying electrical
ameter Tungsten needle contact between the probe and DUT (increasing the weight
tends to deform the tip of the probe, thus increasing contact

& X
Micro-Probe
on XYZ stage

_—

Figure4. Forward Body Bias Injection Platform
Noemie Beringuier-Boher, Marc Lacruche, David El-Baze,
Jean-Max Dutertre, Jean—-Baptiste Rigaud, and Philippe
Maurine. 2016. Body Biasing Injection Attacks in
Practice.

CARDIS 2020 S

What is Wafer Level Chip Scale Packaging
(WLCSP)?

Die Backside!

(Maybe)

Figure 1. Typical FI-WLPs

h’r’rps://www.nxp.com/docg[Rers/Q%%oIicq'rion-no're/AN 10439.pdf

About that “Maybe”

Xenon Death Flash: a free physics lesson
* For “non-security” reasons the backside may be

Qth Feb 2015 Liz Upton 194 comments

9 covered somehow.

If you own a Raspberry Pi 2, congratulations: you're also the proud owner of an elegant

demonstration of the photoelectric effect! e Onthe STM32F4150G part, it’s some covering
At the weekend, Peter Onion, a veteran of our forums and of Raspberry Jams in (||ke pc:inf?) ThCﬁ' YOU cdan scrape Off, or dissolve

Cambridge, Bletchley and surrounding areas (visible, costumed, in the background of
this photo at the Christmas Cam3Jam), discovered what we think might be the most
adorable bug we've ever come across.

with acetone.

Peter's bug report came via our forums. He'd been proudly photographing his new Of encquUIGflon CII'OUI’ICI It fOI’ various reasons

Raspberry Pi 2, and had discovered something peculiar: every time the flash on his (including “fan-out” WLCSP which is closer to
camera went off, his Pi powered down. BGA)

Fan-in WLCSP

B Diagrami: chi ' y ' '

400 mv +

o Fan-Out WLCSP
https:/ /www.raspberrypi.org /blog/xenon-death-flash-a-free-
physics-lesson/

Where is WLCSP used in real life?

* Anywhere you need small devices!

Normal micros & secure micros available in this package.

CARDIS 2020

nRF52840-CKAA-R

|

NORDIC

@ Enlarge

Images are for reference only
See Product Specifications

©aao

Mouser #:
Mfr. #:
Mfr.:

Customer #:

Description:

Lifecycle:

Datasheet:

ECAD Model:

949-NRF52840-CKAA-R
nRF52840-CKAA-R

Nordic Semiconductor

Customer #

RF System on a Chip - SoC NRF52840
WLCSP

@ New Product: New from this
manufacturer.

nRF52840-CKAA-R Datasheet (PDF)

Build or Request
PCB Footprint or Symbol

Download the free Library Loader to convert this file for your ECAD

Why BBI?

From previous work, we know some nice things about BBI:

* X-Y positioning on chip surface means can fine-tune effect/location.

* Detectors for light will (hopefully) not be tripped by BBI.

* Detectors for EM may not be tripped by BBI (theorized, not clear if proven).

BBI Risks

* We also know - you can damage the IC.
Magic Smoke!

Proof: Volodymyr Pikhur blowing up a PS4 in 2019: https://www.youtube.com /watch2v=RK73RsU9a8A

CARDIS 2020

10

https://www.youtube.com/watch?v=RK73RsU9a8A

What makes BBl great?

* Building injection tools for BBl is much cheaper than for EMFI & laser.

* Using WLCSP (and other exposed die backside packaging) mean no
chemicals.

* No need for hydrofluoric acid or similar!
* Your skin/bones/eyes thank you!

One Weird Trick to make WLCSP Work on
standard 2-layer PCBs (engineers hate himl)

L

¥elobaolbbs®

Balls are removed to let traces route through — means
there is no need for filled vias or microvias.
Using 4 mil trace/space boards (now relatively low-cost)

https:/ /github.com /newaetech /chipwhisperer-target-cw 308t /tree /master /CW308T_STM32F4_CSP

CARDIS 2020

12

BBl using Transformer

QQQQQQQQQQ

Low Cost BBl Probe (that’s it!)

X

Q1 IRF7807Z 3
m:l |

ANOC - T
1
'
V-

&0

E,_.

=

&0

E,_.\

S

f\\

1
| % Target Backside
° g

. 13 - % W

CARDIS 2020

Target GND

14

Implementation

How to Characterize?

LJ! . “‘ ~

C e '
EAdr~ >
-

CARDIS 2020

100:1 Passive scope
probe.

Tektronix CT-6 current
probe (1 GHz BW).

16

Input Voltage =2 Output Voltage => Current

Charge Voltage vs. Output Pulse

175 A
- 800

150 A

Target GND

- 600

- 400
We control the input voltage, and deriv
mapping to output voltage from

T
N
o
o

Outpuyt Pulse Peak Voltage (V)

measurements.

Output voltage will change slightly with

changes to impedance of target backside. 0 2 \A\A 6 8 10 12 14
Input Voltage (V)

All results in this paper will be for a given Input voltage is input to the BBI probe itself.

input voltage to the probe.

CARDIS 2020 17

Output Pulse Peak Current (mA)

Die Backside Resistance?

* Using DMM, resistance ~ 200 kOhm (=2 DC resistance).
* From voltage /current, resistance ~ 250 Ohm (= AC impedance).

* Probably also related to break-down voltages etc, not purely a AC
impedance function.

* NOTE - Devices which blow up often showed very small resistance,
suggesting that breakdown due to BBl is cause of failures...

Glitch #1 — The Loop.

uint8_t glitch_loop(uint8_t* in)

{ Easy trigger!

volatile uintl16_t i, j;
volatile uint32_t cnt;
cnt = 0;
trigger_high();
for(i=0; i<50; i++){
for(j=0; j<50; j++){
cnt++;

Lots of volatile variable accesses
etc.

}
}
trigger_low();
simpleserial_put("r", 4, (uint8_t*)&cnt);
return (cnt !'= 2500);

CARDIS 2020 19

Running @ 7.37 MHz, Location 1

Glitch Loop on STM32F415 @ 7.37 Mhz

17.5 1

15.0 -

12.5

10.0 -

~
(9
1

v
o
1

Input Width (Cycles @ 135.6 nS)

N
u
I

Normal
X Reset
e Success

I
f

D¢ o

O S O O
00 B ® 000 © 0N MK o
OGRS D
00 0 @ GEPEND GENNNNEr © OCBuIS)HENNINNINNNNNND 4
@® o e o o@D @@ 000 © C0 @ o e RN
® o oo o ® 00 o - o (]
(-} @

B TR

5 10 15 20
Input Voltage

CARDIS 2020

20

Input Width (Cycles @ 25 nS)

Running @ 40 MHz, Location 1

Simple Glitch on STM32F415 @ 40 Mhz

100 + Normal
X Reset / This area was not searched!
e Succe
80 4
60 -
| —— Code detected a number of
40 - resets and stopped
searching that width...
20 1
0 -
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Input Voltage

CARDIS 2020

ing & what happens

XY Position

\

Uy

22

o
N
o
N
s
(&)
(a4
<
\9

Scan Location

ZL(Y Probing on WLCSP device topside

Test here.

X Pgsition (mm)

- —

Edges of WLCSP break off
easily, so avoided getting too
close.

! The asymmetry of the scan is real, and called

Y Position (mm)

CARDIS 2020

“Colin eyeballed the starting point”.

23

One Red Dot = Lots of Scanning

Algorithm 1: Summary of evaluation at each step.

Result: Fault injection details about location.
for TrialNumber <— 1 to 2 do
for BBIy <+ 0.50V to 10.00V do
for GlitchCycles < 5 to 60 do
Run double-loop code;
Insert pulse;
if Output is incorrect but correctly formed then
| Log success;
end
if Reset is detected or output malformed then
| Log reset;
end
if 5 or more resets in a row then
Check for flash corruption;
if Flash memory corruption then
Log flash error;
Reprogram target;
end
end

end

end
end

——— 2090 combinations.

CARDIS 2020

24

Example: Reset v. Successes

Total Resets At X-Y Location Total Successes At X-Y Location
-3.2 -3.2
-3.0 -3.0
-2.8 -2.8
-2.6 -2.6
-2.4 -2.4
2.2 2.2
__ 2.0 2.0
IS IS
E-1l8 E-1l8
c c
2 -16 o.16
))
3 8
S-1.4 S-1.4
> >
-1.2 -1.2
-1.0 -1.0
-0.8 -0.8
-0.6 -0.6
-0.4 -0.4
-0.2 -0.2
0.0 0.0
QQ Q’\, q,"‘ g‘° Q‘b :\/9 ,\:\, ,\’u \fo :\,fb ,LQ q:’l, ’l«b‘ fI«b ’L‘b QQ Q’\, Qbo Q‘° Q‘b ,\/Q ,\/’L ,\’u \fo :\,fb ,LQ q:’l, ’l«b‘ fI«b ’L‘b
X Location (mm) X Location (mm)

Counts totals across all settings of voltage.

CARDIS 2020

25

Example: Minimum input voltage for...

When first glitch is seen: When a reliable glitch is seen:

Minimum Voltage With First Success Minimum Voltage With > 10 Successes

Y Location (mm)
-
[=)]

Y Location (mm)
-
[=)]

¥ o oF SRRt > 0P 0D AT AR 00 0P O¥ g oF SRmEETLY X a0 AP R ad gt a0 0P
X Location (mm) X Location (mm)
CARDIS 2020

26

What else can you do?

* The full dataset & notebooks to create those graphs have been pushed
to github, a lot more data you can plot!

plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")

Loop over data dimensions and create text annotations.
for i in range(len(y)):
for j in range(len(x)):
text = ax.text(j, i, hmdata[i, j],
ha="center"™, va="center"”, color="k")
ax.set_xlim(ax.get_xlim()[::-1]) # Flip x
return ax

ax = makehmap(successes)

ax.set_title("Total Successes At X-Y Location")
plt.savefig(“successesxy.png”, dpi=30@, bbox_inches = "tight")
plt.show()

ax = makehmap(resets)

ax.set_title("Total Resets At X-Y Location")
plt.savefig(“resetsxy.png", dpi=300, bbox_inches = 'tight')
plt.show()

Total Successes At X-Y Location

https: / /github.com /newaetech /chipjabber-basicbbi /tree /master /cardis2020

CARDIS 2020

27

Glitch #2 - RSA

* Original BBl paper used RSA glitch to understand sensitivity...
recreated here.

* MBED-TLS RSA implementation, which uses CRT.

T
/* Compare in constant time just in case */
for(diff = @, i = 8; 1 < ctx->len; i++)
diff |= verif[i] ~ sig[i];
diff_no_optimize = diff;
RSA implementation checks returned
if(diff_no_optimize != @) signature is valid.
{
...we removed that check.
ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED; . . .
* Claimed — the original BBl paper
goto cleanup; .
} used a single fault CRT as well.

— * In reality — because I'm lazy.

Glitch #2 - Results

RSA Signing Result Occurrence
Exploitable (p or q) 54.2 %
Device Reset 28.0 %
Normal 11.9 %
Invalid 5.9 %

Table 1: RSA-CRT Fault Attack.

CARDIS 2020

29

Glitch #3 — DFA on Hardware AES Engine

Response types:

* Key leakage

* Obvious portions of key copied to returned value.

* Partial ciphertext
* Ciphertext output, but with constants in some bytes/words (normally 0).

* Plaintext leakage
* Portions of plaintext returned instead of ciphertext.

* Other constant output
* No obvious dependance on inputs (i.e., all Os).

* Interesting-looking output
* Some incorrect output not the above cases. Typically looks like random output.

Glitch #3 — Results

Fault Results on STM32F415 Hardware AES Peripheral

Input Voltage

i 2 ﬁ 3 e Normal
g 8 “ —¢ Reset
g« i 3 § * Other Constant
$ § § + Partial Ciphertext
% % X % % e Partial Keyleak
8 - : g § X X X .~ .~ e Plaintext
$ EE % % X -4 g X B Interesting
o ;-5 X X : I
oo i |
6 ? X
5 ' g % &
¥ % X %
41 -
B g
3 i $ XX
 } 111
5 - 3
250 255 260 275 280

Glitch Locatlog’?eP és&?%ie)

Hardware AES Timing

* STM32F4 HW AES leakage is known (classic “last-round HD of state”).
* We can perform CPA attack to confirm when actual engine is running.

* Engine appears to be running with 1 cycle per round.

AT

CARDIS 2020

32

Reasons for Key & Plaintext Leakage

* At some point — data is transferred to/from AES core.

* Assumed this leakage is actually failure to unload correctly.

_fault Results on STM32F415 Hardware AES Peripheral

107 0 = Normal
g 2 % § § % —>»— Reset
9- g g H * Other Constant
% E = Partial Ciphertext
§ \(% § § § § £% o Ppartial Keyleak
81 ¢ ¢ 3 S22 % i i . . °® Plaintext
$ $ %)yc 5 35 ;E : © 2 M Interesting
7 1 é 8 § § 5 5 38 3 i1 . 13 ” e
v ~ ¥ Location of “key leakage” is
g |l
S 6{]id § 3 — early on — maybe entire
2 i . .
BT i I encryption skipped?
£ % %
= - ;e
Hil
3 | N
: g g &
2..

250 255 260 265 270 275 280
Glitch Location (Clock CyclelCARDIS 2020 33

What is interesting?

* Did not match known (obvious) fault models.

* Reversing output and comparing intermediate rounds did not reveal

any matches

Input Voltage

10 A

Fault Results

n STM32F415 Hardware AES Peripheral

(o]
e X X e Normal
g"g%%%ggg X —>— Reset
5 § £ 2 q° ® Other Constant
$ ¥ % g § 2 E % ¥ Partial Ciphertext
§ g % % SRR £ % o Ppartial Keyleak
; ' £ £ 35 g % 2 EE 3 g ° Plaintex.t
$ v %% % X X x ¢ ¢ MW Interesting
: EEEEER 4 % ¥
§ 88 XX XXEZX
81
§
*7 z
% % ¥
i1
' 111
X
250 255 260 265-ARDIS 2580 275 280

Glitch Location (Clock Cycle)

This time is during the actual
encryption — suggests more
than just input /output
corruption?

34

Other Result — Flash set to 02

n [311]: #Test board #1

Erase - then re-run super-Loop
data3 = stm32f.cmdReadMemory(©x880€0068, ex1ee)
print(data3)

[e, ©, 0,0, 8,0,0,0, 0, 0,0,0,0,0,0,80,0,0,0,0,0,0,0, 0,0, %5255, 755,255, 255255255 255255 Differing amounts of byfes

255, 25
5, 255, “)?
255, 25 set to O .
5, 255,
255, 25
5, 255,
255, 25
5, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]

Assume we trip some

tn [295]: #Test board #1 £ : ” :

n [2951: | #Test boar programming” routine?
#Testing after a serious FI campaign...

#datal = stm32f.cmdReadMemory (6x8000006, ©x108)
#data2 = stm32f.cmdReadMemory (6x8ee0106, €x108)

print(datal)

print(data2)

[0, 0, 0,0,90,0,0,0,0,0,90,80,0,90,0,9,9,0,0,8,0,90,0,0,09,0,90,89,0,9,0,09,209,80,89,H8,
©,90,0,0,90,0,0,9,90,8¢,806,90,0,0,0,90,0,0,0,090,9,0,86,896,82,0,09,0,890,8e,8,0,0,80,0,
©,90,0,90,90,0,0,9,90,@,90,9,0,9,0,90,90,0,90,090,9,0,8¢,890,89,0,09,0,890,8e,8,9,09,80,0,
©,90,0,90,90,90,0,9,90,¢,90,90,0,90,0,89,90,90,90,090,9,9,¢,89,92,0,090,0,890,8e,8,9,0,80,09,
©,90,0,90,90,0,0,9,90,¢,90,90,0,9,0,89,90,90,90,090,9,90,¢,89,92,0,90,0,890,8e,8,9,0,80,09,

eJ eJ a, eJ e-‘ a} a] eJ a} e-‘ e) aJ e! eJ e] e, a} GJ e) a’ 93 e-‘ e’ eJ aJ eJ eJ a’ eJ e-‘ a} eJ eJ e’ eJ

eJ e) a, e]

[e) a’ BJ g) a’ e) e) BJ e) a’ BJ a) a} aJ a’ e} e) e, e’ BJ a) aJ BJ a’ BJ e) a’ BJ e) a’ e) a) BJ e) a

BJ 9) a, eJ g) a} eJ e’ a’ e) e) aJ BJ e) eJ 9, a’ BJ e) a’ 9’ g) e’ 9) a) BJ e) a’ eJ a) a} eJ e’ e’ 9)

BJ 9) a, BJ a) a} 6) B’ a’ e) e) GJ BJ BJ aJ B, a’ BJ e) a’ BJ a) e’ e) a) BJ e) a’ BJ a) a} eJ B’ 9’ 9)

eJ 9) a’ eJ BJ e, eJ BJ a-‘ QJ e) eJ B’ eJ GJ 9’ a-‘ eJ e) a, 9’ BJ e’ 9) aJ eJ e) a, eJ BJ a, eJ BJ e’ 9)

e, ¢, ¢, ¢, @, 9, @, @, 0, @, ©, @, ©, ©, @, ©, ©, ©, @, @, @, @, @, @, ©, @, @, @, 255, 255, 255, 255, 255, 255, 255, 255, 25
5, 255,

2
255, 25
5]

CARDIS 2020 35

Other Result — Flash Damage

* One test device would only partially erase on half the flash.

* Performing a chip erase would mean a small percentage of bits read as O (not
1 as intended).

The bits would random change when re-read (which read as 0).

Setting bits to O worked perfectly.

The other half of the flash memory worked perfectly.

No excessive power consumption (see next slide for other ways to damage).

Tavow - -
fbeee --
fceoo --
fdeee --
fegB0 --
ffeee --
5e79e8

63492

ilncorrect D1LS
Incorrect bits
Incorrect bits
Incorrect bits
Incorrect bits
Incorrect bits

WOWON N NV Y

* Assumed damage to charge pump or control circuitry for the flash?

Other Result — Device Destruction.

* Several devices got very hot, and mostly didn’t work anymore.
* Interestingly some did try to work even in this state.
* Program/erase didn’t work reliably with these “too hot” devices.

* Power consumption was very high — may be just “browning out”.

Bringing Body-biasing Injection Back

* BBl is not new — but appears to have somewhat languished from lack
of accessible tooling.

* ChipJabber-BasicBBI tries to fix that — very low cost & open-source.

https://github.com/newaetech/chipjabber-basicbbi
https://discord.gg/chipwhisperer Join my discord for hardware security chat!

@colinoflynn (twitter)

colin@oflynn.com (email)

CARDIS 2020

38

