Classic McEliece Implementation

with Low Memory Footprint

Johannes Roth, MTG AG (presenter)
Evangelos Karatsiolis, MTG AG
Juliane Kramer, Technische Universitat Darmstadt

MTG

4 TECHNISCHE
UNIVERSITAT
' DARMSTADT

November 7, 2020 | MTG AG | Johannes Roth | 1

Classic McEliece on Embedded Devices

Parameter Set

Public Key (B)

mceliece348864
mceliece460896
mceliece6688128
mceliece6960119
mceliece8192128

261,120
524,160
1,044,992
1,047,319
1,357,824

STM32 NUCLEO-F429Z1
= ARM Cortex-M4
= RAM: 256 KB (192 KB + 64 KB)
m Flash: 2048 KB

November 7, 2020 | MTG AG | Johannes Roth | 2

Classic McEliece on Embedded Devices (2)

m Address the handling of the public key, s.t.

o Encapsulation is more memory-efficient
o Key pair generation is more memory-efficient

® Goal: never hold the (full) public key in memory

= Stream it!

1. Stream from the private key
2. Streaming encapsulation

= Work is based on round-2 reference code

November 7, 2020 | MTG AG | Johannes Roth | 3

Classic McEliece Key Pair Generation

1. Generate a uniform random monic irreducible polynomial g(z) € Fy[z] of degree ¢.
2. Select a uniform random sequence (ai, @, ..., o) of n distinct elements of F,.

3. Compute the t x n matrix I = {h;;} over F,, where h;; = aiglay) fori=1,...t
and j=1,...,n.

4. Form an mt x n matrix H over F, by replacing each entry ¢y + c12 + -+ - + Cpp_12™ !

of H with a column of ¢ bits cg, ¢y, ..., Cm_1.

5. Reduce H to systematic form (I,_; | T), where I, is an (n — k) x (n — k) identity
matrix. If this fails, go back to Step 1.

6. Generate a uniform random n-bit string s.

7. Put ' = (g, a1, aa,...,a,) and output (s,T) as private key and T as public key.

November 7, 2020 | MTG AG | Johannes Roth | 4

Classic McEliece Key Pair Generation (2)

. Generate a uniform random monic irreducible polynomial g(z) € F,[z] of degree t.

1
2. Select a uniform random sequence (ai, @, ..., o) of n distinct elements of F,.

3. Compute the ¢ x n matrix H = {h;;} over F,, where h; j = o Yglay) fori=1,..., t
and j=1,..., n

{. Form an mt x n matrix H over Fy by replacing each entry ¢y + ¢12 + -+ + ¢p_12™ !
of H with a column of ¢ bits ¢y, ¢y, ..., Cn—1

5. Reduce H to systematic form (I, | T'), where I, ; is an (n — k) x (n — k) identity
matrix. If this fails, go back to Step 1.

6. Generate a uniform random n-bit string s.

Pt = (9,01, a0, ..., a,) and output (s,I") as private key and T as public key.

Private Key: (I' = (g, a1, a9, ,ap),S)

November 7, 2020 | MTG AG | Johannes Roth | 5

Classic McEliece Key Pair Generation (3)

I. Generate a uniform random monic irreducible polynomial g(x) € Fy[z| of degree t.
2. Select a uniform random sequence (o, ao, .. ., ay,) of n distinct elements of F,.

3. Compute the t x n matrix I = {h;;} over F,, where h;; = aiglay) fori=1,...t
and j=1,...,n.

4. Form an mt x n matrix H over F, by replacing each entry ¢y + c12 + -+ - + Cpp_12™ !
of H with a column of ¢ bits cg, ¢y, ..., Cm_1.

5. Reduce H to systematic form (I,_; | T), where I, is an (n — k) x (n — k) identity
matrix. If this fails, go back to Step 1.

6. Generate a uniform random n-bit string s.

7. Put I' = (g,0q, 00, ..., a,) and output (s,I") as private key and T as public key.

Public Key: T € FY" ¥ part of the parity check matrix H = (I,_ | T)

November 7, 2020 | MTG AG | Johannes Roth | 6

Streaming the Public Key from the Private Key

= How to stream the public key to another party?

November 7, 2020 | MTG AG | Johannes Roth | 7

Streaming the Public Key from the Private Key (2)

m Approach in Classic McEliece submission
o Perform Gaussian elimination on a parity-check matrix
- Computes H = (I,_ | T) from A € T)"

- Requires memory to hold A

= Qur Approach
o Compute H by H = SH
- Sis the inverse of the leftmost n — k columns of A
- § e F{"0*K) is much smaller than A
o Computing the public key T can be done in smaller chunks

- Note: H can be computed on-the-fly from the private key.

November 7, 2020 | MTG AG | Johannes Roth | 8

Streaming the Public Key from the Private Key (3)

Public Key Retrieval / Streaming

1. Fori=n—k+1ton:
2. Compute c as the ith column of H (from the private key)
3. Compute the product Sc
4. Send Sc and release the buffers that contain Sc and ¢

® Can also be done in row-major order
o ... need to recompute H for every row

November 7, 2020 | MTG AG | Johannes Roth | 9

Streaming the Public Key from the Private Key (4)

® Significant computational overhead for the public key retrieval

Parameter Set

Public Key Retrieval
Cycles s

mceliece348864
mceliece460896
mceliece6688128
mceliece8192128

667,392,425 3.97
2,250,917,383 13.40
5,820,127,974 34.64
7,558,882,087 44.99

November 7, 2020 | MTG AG | Johannes Roth | 10

I ————
Extended Private Key

m Add the matrix S to the private key

oie (S,I'=(g,a1,a2, -+ ,an),S)
= |n exchange do not store the public key at all
= This obviously reduces the key pair size

= But how to compute S memory-efficiently?

o Obvious approach: Gaussian elimination
o Requires two matrices of the size of S

November 7, 2020 | MTG AG | Johannes Roth | 11

I ————
Extended Private Key Generation

Memory-efficient inversion of S—1

Set S~ as the leftmost n — k columns of H
Perform the LU decomposition PS~! = LU
Invert L and U

Compute the product UL !

Undo permutation to obtain S = U~'L~'P

a s N =

m Each step can be done in-place
o but the permutation matrix has to be stored separately (our implementation: 2(n — k) bytes)

November 7, 2020 | MTG AG | Johannes Roth | 12

I ————
Streaming Encapsulation

m Public key is used to compute the syndrome
o s = He = (I,_« | T)e, with e € F; a random weight-t vector

= While a public key is streamed in, all received bytes can be consumed to update s

= Example: Column-major order

1. Generate a random error vector e € F}
2. Sets:=e
3. Fori:=1tok:

4. Receive public key column ¢

5. Compute s := s + ¢;c

= A similar approach has already been described for the original McEliece scheme’
o We have not seen it mentioned for Classic McEliece yet, though

1Strenzke, F.: Solutions for the Storage Problem of McEliece Public and Private Keys on Memory-Constrained
Platforms. In: Gollmann, D., Freiling, F.C. (eds.) Information Security. pp. 120-135. Springer Berlin Heidelberg (2012)

November 7, 2020 | MTG AG | Johannes Roth | 13

I ————
Impact on Memory Requirements

Key Pair Generation / Extended Private Key Generation
= Dominated by H/ S

m For reference implementation:
o Gaussian Elimination of H to obtain H
o n(n — k)/8 bytes

= For our implementation:

o Almost-in-place inversion of matrix S~*
o (n—k)(n—k)/8+2(n — k) bytes

Parameter Set n k Ref. Impl. Our Impl. | Difference | Ratio
mceliece348864 3488 2720 334,848 75,264 259,584 | 0.22
mceliece460896 4608 3360 718,848 197,184 521,664 | 0.27
mceliece6688128 6688 5024 | 1,391,104 349,440 | 1,041,664 | 0.25
mceliece8192128 8192 6528 | 1,703,936 349,440 | 1,354,496 | 0.21

November 7, 2020 | MTG AG | Johannes Roth | 14

I ————
Impact on Memory Requirements (2)

Note, this approach can also be used to stream the public key to flash memory
m Greatly reduced memory requirements of extended private key generation
= Circumvents the overhead of repeatedly retrieving the public key
® But: Consider limited write cycles of the flash (short-lived ephemeral keys)

November 7, 2020 | MTG AG | Johannes Roth | 15

I ————
Impact on Memory Requirements (3)

Streaming Encapsulation
= Buffer e € F} and the resulting syndrome s = He € F1

m Buffer one chunk of the public key

o Our implementation chooses to buffer chunks of 8 columns, i.e. n — k bytes
o Assumes public key is sent in column-major order
o In principle, any order and any size for the chunks is possible

Parameter Set n k | Memory Overhead
mceliece348864 3488 2720 1300
mceliece460896 4608 3360 1980
mceliece6688128 6688 5024 2708
mceliece8192128 8192 6528 2896

November 7, 2020 | MTG AG | Johannes Roth | 16

I ————
Meaning of the Results

m Classic McEliece can be deployed with less memory than one might think, considering the
public key size
o Especially true if only the encapsulation operation is performed on a device

m The streaming encapsulation might also mitigate some DoS attacks
o No need to allocate space for the public key

m We demonstrate the practical relevance with a proof of concept TLS implementation

November 7, 2020 | MTG AG | Johannes Roth | 17

I ————
TLS Proof of Concept Prototype in mbedTLS

® mbedTLS Library
o TLS1.2

m Use Classic McEliece as PKE to encrypt the TLS premaster secret

o Encapsulate AES key, use AES key to encrypt TLS premaster secret
o Ephemeral Classic McEliece key
o The parameter set is mceliece348864

m Use SPHINCS*-256f signatures

o 49,216 bytes
o For signing the ephemeral public key and the end-entity certificate

November 7, 2020 | MTG AG | Johannes Roth | 18

I ————
TLS Proof of Concept Prototype in mbedTLS (2)

® The board can handle both the server and the client side

m For completeness, we give measurements
o however, speed was not the goal of this work

= |n the following, two scenarios are considered:

o The board is the TLS client and connects to a TLS server
o The board is the TLS server and a TLS client connects to it

m The other party is a much faster x86 machine (Intel i5-8400)

November 7, 2020 | MTG AG | Johannes Roth | 19

I ————
TLS Proof of Concept Prototype in mbedTLS (3)

m Average timings for the board as a server
o Total handshake time: 126.3 s

Extended private key gen: 10.83 s

Public key retrieval: 3.97 s

Decapsulation: 0.99 s

SPHINCS* sign: 109.71s

m Average timings for the board as a client

o Total handshake time: 5.83 s
o Encapsulation: 0.018 s
o SPHINCS* verify (x2): 5.18s

= Not listed timings include: Network overhead, computations on x86 machine

November 7, 2020 | MTG AG | Johannes Roth | 20

	Introduction
	Memory Optimizations
	TLS Prototype

