
Classic McEliece Implementation
with Low Memory Footprint

Johannes Roth, MTG AG (presenter)
Evangelos Karatsiolis, MTG AG
Juliane Krämer, Technische Universität Darmstadt

November 7, 2020 | MTG AG | Johannes Roth | 1

Classic McEliece on Embedded Devices

Parameter Set Public Key (B)
mceliece348864 261,120
mceliece460896 524,160
mceliece6688128 1,044,992
mceliece6960119 1,047,319
mceliece8192128 1,357,824

STM32 NUCLEO-F429ZI
ARM Cortex-M4
RAM: 256 KB (192 KB + 64 KB)
Flash: 2048 KB

November 7, 2020 | MTG AG | Johannes Roth | 2

Classic McEliece on Embedded Devices (2)

Address the handling of the public key, s.t.
Encapsulation is more memory-efficient
Key pair generation is more memory-efficient

Goal: never hold the (full) public key in memory

Stream it!
1. Stream from the private key
2. Streaming encapsulation

Work is based on round-2 reference code

November 7, 2020 | MTG AG | Johannes Roth | 3

Classic McEliece Key Pair Generation

November 7, 2020 | MTG AG | Johannes Roth | 4

Classic McEliece Key Pair Generation (2)

Private Key: (Γ = (g, α1, α2, · · · , αn), s)

November 7, 2020 | MTG AG | Johannes Roth | 5

Classic McEliece Key Pair Generation (3)

Public Key: T ∈ F(n−k)×k
2 , part of the parity check matrix H = (In−k | T)

November 7, 2020 | MTG AG | Johannes Roth | 6

Streaming the Public Key from the Private Key

How to stream the public key to another party?

November 7, 2020 | MTG AG | Johannes Roth | 7

Streaming the Public Key from the Private Key (2)

Approach in Classic McEliece submission
Perform Gaussian elimination on a parity-check matrix

– Computes H = (In−k | T) from Ĥ ∈ F(n−k)×n
2

– Requires memory to hold Ĥ

Our Approach
Compute H by H = SĤ

– S is the inverse of the leftmost n− k columns of Ĥ
– S ∈ F(n−k)×(n−k)

2 is much smaller than Ĥ
Computing the public key T can be done in smaller chunks

– Note: Ĥ can be computed on-the-fly from the private key.

November 7, 2020 | MTG AG | Johannes Roth | 8

Streaming the Public Key from the Private Key (3)

Public Key Retrieval / Streaming

1. For i = n− k + 1 to n:
2. Compute c as the ith column of Ĥ (from the private key)
3. Compute the product Sc
4. Send Sc and release the buffers that contain Sc and c

Can also be done in row-major order
... need to recompute Ĥ for every row

November 7, 2020 | MTG AG | Johannes Roth | 9

Streaming the Public Key from the Private Key (4)

Significant computational overhead for the public key retrieval

Parameter Set Public Key Retrieval
Cycles s

mceliece348864 667,392,425 3.97
mceliece460896 2,250,917,383 13.40
mceliece6688128 5,820,127,974 34.64
mceliece8192128 7,558,882,087 44.99

November 7, 2020 | MTG AG | Johannes Roth | 10

Extended Private Key

Add the matrix S to the private key
i.e. (S,Γ = (g, α1, α2, · · · , αn), s)

In exchange do not store the public key at all

This obviously reduces the key pair size

But how to compute S memory-efficiently?
Obvious approach: Gaussian elimination
Requires two matrices of the size of S

November 7, 2020 | MTG AG | Johannes Roth | 11

Extended Private Key Generation

Memory-efficient inversion of S−1

1. Set S−1 as the leftmost n− k columns of Ĥ
2. Perform the LU decomposition PS−1 = LU
3. Invert L and U
4. Compute the product U−1L−1

5. Undo permutation to obtain S = U−1L−1P

Each step can be done in-place
but the permutation matrix has to be stored separately (our implementation: 2(n− k) bytes)

November 7, 2020 | MTG AG | Johannes Roth | 12

Streaming Encapsulation

Public key is used to compute the syndrome
s = He = (In−k | T)e, with e ∈ Fn

2 a random weight-t vector

While a public key is streamed in, all received bytes can be consumed to update s

Example: Column-major order
1. Generate a random error vector e ∈ Fn

2

2. Set s := e
3. For i := 1 to k:
4. Receive public key column c
5. Compute s := s+ eic

A similar approach has already been described for the original McEliece scheme1

We have not seen it mentioned for Classic McEliece yet, though

1Strenzke, F.: Solutions for the Storage Problem of McEliece Public and Private Keys on Memory-Constrained
Platforms. In: Gollmann, D., Freiling, F.C. (eds.) Information Security. pp. 120–135. Springer Berlin Heidelberg (2012)

November 7, 2020 | MTG AG | Johannes Roth | 13

Impact on Memory Requirements

Key Pair Generation / Extended Private Key Generation
Dominated by Ĥ / S
For reference implementation:

Gaussian Elimination of Ĥ to obtain H
n(n− k)/8 bytes

For our implementation:
Almost-in-place inversion of matrix S−1

(n− k)(n− k)/8 + 2(n− k) bytes

Parameter Set n k Ref. Impl. Our Impl. Difference Ratio
mceliece348864 3488 2720 334,848 75,264 259,584 0.22
mceliece460896 4608 3360 718,848 197,184 521,664 0.27
mceliece6688128 6688 5024 1,391,104 349,440 1,041,664 0.25
mceliece8192128 8192 6528 1,703,936 349,440 1,354,496 0.21

November 7, 2020 | MTG AG | Johannes Roth | 14

Impact on Memory Requirements (2)

Note, this approach can also be used to stream the public key to flash memory
Greatly reduced memory requirements of extended private key generation
Circumvents the overhead of repeatedly retrieving the public key
But: Consider limited write cycles of the flash (short-lived ephemeral keys)

November 7, 2020 | MTG AG | Johannes Roth | 15

Impact on Memory Requirements (3)

Streaming Encapsulation
Buffer e ∈ Fn

2 and the resulting syndrome s = He ∈ Fn−k
2

Buffer one chunk of the public key
Our implementation chooses to buffer chunks of 8 columns, i.e. n− k bytes
Assumes public key is sent in column-major order
In principle, any order and any size for the chunks is possible

Parameter Set n k Memory Overhead
mceliece348864 3488 2720 1300
mceliece460896 4608 3360 1980
mceliece6688128 6688 5024 2708
mceliece8192128 8192 6528 2896

November 7, 2020 | MTG AG | Johannes Roth | 16

Meaning of the Results

Classic McEliece can be deployed with less memory than one might think, considering the
public key size

Especially true if only the encapsulation operation is performed on a device

The streaming encapsulation might also mitigate some DoS attacks
No need to allocate space for the public key

We demonstrate the practical relevance with a proof of concept TLS implementation

November 7, 2020 | MTG AG | Johannes Roth | 17

TLS Proof of Concept Prototype in mbedTLS

mbedTLS Library
TLS 1.2

Use Classic McEliece as PKE to encrypt the TLS premaster secret
Encapsulate AES key, use AES key to encrypt TLS premaster secret
Ephemeral Classic McEliece key
The parameter set is mceliece348864

Use SPHINCS+-256f signatures
49,216 bytes
For signing the ephemeral public key and the end-entity certificate

November 7, 2020 | MTG AG | Johannes Roth | 18

TLS Proof of Concept Prototype in mbedTLS (2)

The board can handle both the server and the client side

For completeness, we give measurements
however, speed was not the goal of this work

In the following, two scenarios are considered:
The board is the TLS client and connects to a TLS server
The board is the TLS server and a TLS client connects to it

The other party is a much faster x86 machine (Intel i5-8400)

November 7, 2020 | MTG AG | Johannes Roth | 19

TLS Proof of Concept Prototype in mbedTLS (3)

Average timings for the board as a server
Total handshake time: 126.3 s
Extended private key gen: 10.83 s
Public key retrieval: 3.97 s
Decapsulation: 0.99 s
SPHINCS+ sign: 109.71 s

Average timings for the board as a client
Total handshake time: 5.83 s
Encapsulation: 0.018 s
SPHINCS+ verify (x2): 5.18 s

Not listed timings include: Network overhead, computations on x86 machine

November 7, 2020 | MTG AG | Johannes Roth | 20

	Introduction
	Memory Optimizations
	TLS Prototype

