

A Power Side-Channel Attack on the CCA2-Secure HQC KEM

Thomas Schamberger¹

Julian Renner²

Georg Sigl¹ An

Antonia Wachter-Zeh²

¹Technical University of Munich Faculty of Electrical and Computer Engineering Institute for Security in Information Technology

²Technical University of Munich Faculty of Electrical and Computer Engineering Institute for Communications Engineering

19.11.2020

ng

CARDIS 2020

Tur Uhrenturm

Outline

Introduction Motivation Hamming Quasi Cyclic (HQC) Attacks against HQC Error Correction in HQC

Power Side-Channel Attack Attack Methodology Decoding Oracle

Attack Results

Conclusion

Motivation

- Large-scale quantum computers have strong impact on public key cryptography
 - ⇒ NIST Post-Quantum Cryptography Standardization Process

• "NIST hopes [...] this review period will include more work on side-channel resistant implementations [...]." [1]

[1] NIST: Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process

Hamming Quasi Cyclic (HQC)

- CCA2-secure KEM in the third round of the NIST contest
- Code-based cryptosystem
- Advantages of the scheme:
 - Security does not rely on hiding the structure of the used error-correcting code (in contract to e.g. "Classic McEliece").
 - $\Rightarrow \textbf{Quasi-Cyclic Syndrome Decoding problem}$
- Due to the cyclic structure elements are represented in the ring *R* := 𝔽₂[*X*]/(*Xⁿ* − 1)
 - \Rightarrow Representation as binary values of *n*-bit size

$$x^7 + x^5 + x^4 + x^1 + 1$$
 (*n* = 8)
1 0 1 1 0 0 1 1

HQC - PKE

Encryption/Decryption

Algorithm 1: Encryption

Input: pk = (h, s), pt = (m) and randomness θ Output: ct = (u, v) 1 $e' \stackrel{\$}{\leftarrow} \mathcal{R}$ such that HW(e') = ω_e using θ 2 $(\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{R}^2$ such that HW(\mathbf{r}_1) = HW(\mathbf{r}_2) = ω_r using θ 3 $u \leftarrow \mathbf{r}_1 + h\mathbf{r}_2$ 4 $v \leftarrow \text{Encode}(m) + s\mathbf{r}_2 + e'$ 5 return ct = (u, v)

Algorithm 2: Decryption

Input: sk = (x, y), ct = (u, v)Output: m1 $v' \leftarrow v - uy$ 2 $m \leftarrow Decode(v')$ 3 return m

HQC - KEM

• The PKE version is vulnerable against chosen-ciphertext attacks [2]

 HQC uses a variant of the Fujisaki-Okamoto transformation to achieve a CCA2-secure KEM

[2] Huguenin-Dumittan et al.: *Classical Misuse Attacks on NIST Round2 PQC: The Power of Rank-Based Schemes*

Attacks against HQC

• Published attacks use a timing side-channel in the used error correction of HQC [3,4]

[3] Paiva et al.: A Timing Attack on the HQC Encryption Scheme
[4] Wafo-Tapa et al.: A Practicable Timing Attack Against HQC and its Countermeasure
Schamberger et al. | A Power Side-Channel Attack on the CCA2-Secure HQC KEM

Error Correction in HQC

- HQC uses a product code of a [n₁, k] shortened BCH code C₁ with a generator matrix G₁ ∈ F₂^{k×n₁} and a [n₂, 1] repetition code C₂.
- Encode: $\mathbb{F}_2^k \to \mathbb{F}_2^{n_1 n_2}$
 - Encode with the BCH code: $\mathbb{F}_2^k \to \mathbb{F}_2^{n_1}$
 - $\mathbf{m}' = (m'_0, \dots, m'_{n_1-1}) = \mathbf{m}\mathbf{G}_1$ \mathbf{G}_1 is a generator matrix of the BCH code C_1 .
 - Encode m' with the repetition code: $\mathbb{F}_2^{n_1} \to \mathbb{F}_2^{n_1 n_2}$
 - $m'' = (\underbrace{m'_0, \dots, m'_0}_{n_2 \text{ times}}, \underbrace{m'_1, \dots, m'_1}_{n_2 \text{ times}}, m'_2, \dots, m'_{n_1-1})$
- **Decode**: $\mathbb{F}_2^{n_1n_2} \to \mathbb{F}_2^k$
 - Decode the repetition code: $\mathbb{F}_2^{n_1 n_2} \to \mathbb{F}_2^{n_1}$
 - Majority decoding with border $\lceil \frac{n_2}{2} \rceil$
 - Decode the BCH code: $\mathbb{F}_2^{n_1} \to \mathbb{F}_2^k$

→ 御 ト → 臣 ト → 臣 ト

Example ECC ($k = 2, n_1 = 7, n_2 = 3$)

Encode

Example ECC ($k = 2, n_1 = 7, n_2 = 3$)

Decode

HQC - Attack Target

Algorithm 2: Decryption

Input: $\mathbf{sk} = (\mathbf{x}, \mathbf{y}), \mathbf{ct} = (\mathbf{u}, \mathbf{v})$ Output: \mathbf{m} 1 $\mathbf{v}' \leftarrow \mathbf{v} - \mathbf{u}\mathbf{y}$ 2 $\mathbf{m} \leftarrow \mathsf{Decode}(\mathbf{v}')$ 3 return \mathbf{m}

- $\boldsymbol{y} \in \mathbb{F}_2^n$ with $HW(\boldsymbol{y}) = \omega$ and ω is small
- HQC-128: *n* = 23869 and *ω* = 67
- Set *u* = (1, 0, ..., 0) ∈ 𝔽ⁿ₂
 v' = *v* − *y*
- Task: Find **v** such that power side-channel gives information about **y**
- Solution: Distinguish between correct and faulty BCH input through the power side-channel
 - \Rightarrow Decoding oracle

Attack Approach

- We want to find the positions of "ones" in **y** (support of **y**)
- Solution: Craft *v* in a way that decoding oracle allows to gain information on *y*
- Attack with at two-step approach:
 - Find the approximate support of y (super support)
 - Find the exact support of y
- BCH decoding has the following properties:
 - ► HW(v") = 0: No Error has to be corrected
 - $HW(\mathbf{v}'') = 1$: Error has to be corrected

- The repetition decoder decodes each chunk of *n*₂ bits of *v*' separately
 ⇒ Attack each chunk (there are *n*₁ of them) separately
- Set only $\lceil \frac{n_2}{2} \rceil$ entries of v_i to 1 and v_j to zero, with $j \in [0, n_1 1] \setminus \{i\}$
- Example for the first chunk y_0 ($n_1 = 4$, $n_2 = 3$):

Dependency on the $HW(y_i)$

$\max\{\mathrm{HW}(\boldsymbol{y}_0),\ldots,\mathrm{HW}(\boldsymbol{y}_{n_1-1})\}$	HQC-128	HQC-192	HQC-256
1	5.59%	0.11%	pprox 0%
2	93.20%	77.98%	58.99%
3	99.86%	99.25%	97.99%

Dependency on the $HW(y_i)$

Figure: Pattern for $HW(\mathbf{y}_i) \leq 1$ and $n_2 = 31$ (HQC-128)

Dependency on the $HW(y_i)$

Figure: Pattern for $HW(y_i) \le 2$ and $n_2 = 31$ (HQC-128) Schamberger et al. | A Power Side-Channel Attack on the CCA2-Secure HQC KEM

Finding the support of y

- With the knowledge of the super support (approximate positions) we can now attack the exact support of **y**
- We can check the individual bits of the corresponding **y**_i separately

Figure: Patterns to determine supp(y_i) from ssupp(y_i) for $n_2 = 31$ and ssupp(y_i) = {0, ..., 14}.

- Distinguish through power side-channel measurements if an error is corrected by the BCH decoder
- Template matching approach shown in CHES 2020 [6]:
 - 1. Find points of interest (POI) through a t-test
 - 2. Generate templates for both classes (error or no error) based on POI
 - 3. Template matching for a given attack trace

\mathcal{O}_{01}^{Dec}	$oldsymbol{u}\in\mathbb{F}_2^n$	$oldsymbol{ u} = (oldsymbol{v}_0, \dots, oldsymbol{v}_{n1-1}) \in \mathbb{F}_2^{n_1 n_2} ext{ with } oldsymbol{v}_i \in \mathbb{F}_2^{n_2}$
0 (no error)	0	$(0,\ldots,0)$
1 (error)	0	$(\mathrm{HW}(\boldsymbol{v}_0) = \lceil \frac{n_2}{2} \rceil, 0, \dots, 0)$

[6] Ravi et al.: Generic Side-channel attacks on CCA-secure lattice-based PKE and KEM scheme

Experimental Setup

- Power measurements with CW308 UFO board
- STM32F415RG microcontroller (ARM Cortex-M4)
- *f_{clk}* = 10 MHz
- *f_{sample}* = 156.25 MHz
- Reference implementation of HQC-128 (Round 2 Submission)

1.) Finding POI through t-test

- Can we distinguish between an error and no error during the BCH decoding?
 - \Rightarrow T-test
- BCH Decoding as in Reference implementation:
 - 1. Syndrome computation
 - 2. Error locator polynomial
 - 3. Compute the roots of error locator polynomial

1.) Finding POI through t-test

- Can we distinguish between an error and no error during the BCH decoding?
 - \Rightarrow T-test
- BCH Decoding as in Reference implementation:
 - 1. Syndrome computation
 - 2. Error locator polynomial
 - 3. Compute the roots of error locator polynomial

1.) Finding POI through t-test

- Can we distinguish between an error and no error during the BCH decoding?
 - \Rightarrow T-test
- BCH Decoding as in Reference implementation:
 - 1. Syndrome computation
 - 2. Error locator polynomial
 - 3. Compute the roots of error locator polynomial

2.) Template generation

- Generate a template for both classes:
 - No Error (t⁰_m)
 - Error (t_m^1)
- Mean of all traces for a given class at POI
- Template generation on the target device (no dependency on y)

Schamberger et al. | A Power Side-Channel Attack on the CCA2-Secure HQC KEM

3.) Template matching

- Template matching using "sum of squared differences"
- Attack trace *t_{attack}* is classified to class with the lowest *SSD* result:
 - $SSD(t_{attack}, t^0_m) < SSD(t_{attack}, t^1_m) \rightarrow \text{No Error}$
 - ► $SSD(t_{attack}, t_m^0) > SSD(t_{attack}, t_m^1) \rightarrow \text{Error}$

Attack results

- Decoding oracle successfully classified on 20k traces
- Successful attack on the HQC-128 reference implementation
- Required template traces per class:
 - Results shown with 500 traces
 - A minimum of two traces
- Required attack traces:

	$\max{\{HW(\boldsymbol{y}_i)\}} = 1$	$\max\{\mathrm{HW}(\boldsymbol{y}_i)\}=2$
ssupp(y)	1532	4596
supp(y)	1005	3976

Conclusion

- Power side-channel attack on the HQC KEM
- 93.2% of possible keys of HQC-128 can be attacked
 - Can be increased with additional attack traces
- Proposed solutions for "special keys":
 - ► Linear algebra solution for HW(y[n₁n₂, n − n₁n₂]) > 0
 - Information set decoding
- Practical attack results on ARM Cortex-M4 with less than 10000 traces
- Future work:
 - Countermeasures
 - Transfer to other HQC instances (Reed-Muller + Reed-Solomon code)

Thank You!

Thomas Schamberger

t.schamberger@tum.de
https://www.sec.ei.tum.de/

This work was supported by the German Research Foundation (DFG) under grant number SE2989/1-1 and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 801434).