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Motivation
• Large-scale quantum computers have strong impact on public key

cryptography
⇒ NIST Post-Quantum Cryptography Standardization Process

• "NIST hopes [...] this review period will include more work on
side-channel resistant implementations [...]." [1]

[1] NIST: Status Report on the Second Round of the NIST Post-Quantum Cryptography
Standardization Process
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Hamming Quasi Cyclic (HQC)
• CCA2-secure KEM in the third round of the NIST contest
• Code-based cryptosystem
• Advantages of the scheme:

I Security does not rely on hiding the structure of the used error-correcting
code (in contract to e.g. "Classic McEliece").
⇒ Quasi-Cyclic Syndrome Decoding problem

• Due to the cyclic structure elements are represented in the ring
R := F2[X ]/(X n − 1)
⇒ Representation as binary values of n-bit size

x7 + x5 + x4 + x1 + 1 (n = 8)
1 0 1 1 0 0 1 1
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HQC - PKE
Encryption/Decryption

Algorithm 1: Encryption

Input: pk = (h,s), pt = (m) and randomness θ
Output: ct = (u,v)

1 e′ $←− R such that HW(e′) = ωe using θ

2 (r1, r2)
$←− R2 such that HW(r1) = HW(r2) = ωr using θ

3 u ← r1 + hr2
4 v ← Encode(m) + sr2 + e′
5 return ct = (u,v)

Algorithm 2: Decryption

Input: sk = (x ,y), ct = (u,v)
Output: m

1 v ′ ← v − uy
2 m← Decode(v ′)
3 return m

Schamberger et al. | A Power Side-Channel Attack on the CCA2-Secure HQC KEM 5 / 22



HQC - KEM
• The PKE version is vulnerable against chosen-ciphertext attacks [2]

• HQC uses a variant of the Fujisaki-Okamoto transformation to achieve
a CCA2-secure KEM

[2] Huguenin-Dumittan et al.: Classical Misuse Attacks on NIST Round2 PQC: The Power of
Rank-Based Schemes
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Attacks against HQC
• Published attacks use a timing side-channel in the used error correction

of HQC [3,4]

[3] Paiva et al.: A Timing Attack on the HQC Encryption Scheme
[4] Wafo-Tapa et al.: A Practicable Timing Attack Against HQC and its Countermeasure
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Error Correction in HQC
• HQC uses a product code of a [n1, k ] shortened BCH code C1 with a

generator matrix G1 ∈ Fk×n1
2 and a [n2,1] repetition code C2.

• Encode: Fk
2 → Fn1n2

2
I Encode with the BCH code: Fk

2 → Fn1
2

I m′ = (m′0, . . . ,m
′
n1−1) = mG1

G1 is a generator matrix of the BCH code C1.
I Encode m′ with the repetition code: Fn1

2 → Fn1n2
2

I m′′ = (m′0, . . . ,m′0︸ ︷︷ ︸
n2 times

,m′1, . . . ,m
′
1︸ ︷︷ ︸

n2 times

,m′2, . . . ,m
′
n1−1)

• Decode: Fn1n2
2 → Fk

2
I Decode the repetition code: Fn1n2

2 → Fn1
2

I Majority decoding with border d n2
2 e

I Decode the BCH code: Fn1
2 → Fk

2
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Example ECC (k = 2, n1 = 7, n2 = 3)
• Encode

Schamberger et al. | A Power Side-Channel Attack on the CCA2-Secure HQC KEM 9 / 22



Example ECC (k = 2, n1 = 7, n2 = 3)
• Decode
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v ′′i = 1 if
∑n2−1

j=0 v ′ij ≥
⌈ n2

2

⌉
v ′′i = 0 otherwise



HQC - Attack Target
Algorithm 2: Decryption

Input: sk = (x ,y), ct = (u,v)
Output: m

1 v ′ ← v − uy
2 m← Decode(v ′)
3 return m

• y ∈ Fn
2 with HW(y) = ω and ω is small

• HQC-128: n = 23869 and ω = 67
• Set u = (1,0, . . . ,0) ∈ Fn

2

⇒ v ′ = v − y
• Task: Find v such that power side-channel gives information about y
• Solution: Distinguish between correct and faulty BCH input through the

power side-channel
⇒ Decoding oracle
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Attack Approach
• We want to find the positions of "ones" in y (support of y)
• Solution: Craft v in a way that decoding oracle allows to gain

information on y
• Attack with at two-step approach:

I Find the approximate support of y (super support)
I Find the exact support of y

• BCH decoding has the following properties:
I HW(v ′′) = 0: No Error has to be corrected
I HW(v ′′) = 1: Error has to be corrected
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Finding the super support of y
• The repetition decoder decodes each chunk of n2 bits of v ′ separately
⇒ Attack each chunk (there are n1 of them) separately

• Set only d n2
2 e entries of v i to 1 and vj to zero, with j ∈ [0,n1 − 1] \ {i}

• Example for the first chunk y0 (n1 = 4, n2 = 3):

No error Error
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Finding the super support of y
Dependency on the HW(yi )

max{HW(y0), . . . ,HW(yn1−1)} HQC-128 HQC-192 HQC-256
1 5.59% 0.11% ≈ 0%
2 93.20% 77.98% 58.99%
3 99.86% 99.25% 97.99%
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Figure: Pattern for HW(y i) ≤ 1 and n2 = 31 (HQC-128)
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Figure: Pattern for HW(y i) ≤ 2 and n2 = 31 (HQC-128)
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Finding the support of y
• With the knowledge of the super support (approximate positions) we

can now attack the exact support of y
• We can check the individual bits of the corresponding y i separately

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

...

0

1

14

Figure: Patterns to determine supp(y i) from ssupp(y i) for n2 = 31 and
ssupp(y i) = {0, . . . , 14}.
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Decoding Oracle
• Distinguish through power side-channel measurements if an error is

corrected by the BCH decoder
• Template matching approach shown in CHES 2020 [6]:

1. Find points of interest (POI) through a t-test
2. Generate templates for both classes (error or no error) based on POI
3. Template matching for a given attack trace

ODec
01 u ∈ Fn

2 v = (v0, . . . ,vn1−1) ∈ Fn1n2
2 with v i ∈ Fn2

2
0 (no error) 0 (0, . . . ,0)

1 (error) 0 (HW(v0) = d n2
2 e,0, . . . ,0)

[6] Ravi et al.: Generic Side-channel attacks on CCA-secure lattice-based PKE and KEM
scheme
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Experimental Setup

• Power measurements with
CW308 UFO board

• STM32F415RG microcontroller
(ARM Cortex-M4)

• fclk = 10 MHz
• fsample = 156.25 MHz
• Reference implementation of

HQC-128 (Round 2 Submission)
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Decoding Oracle
1.) Finding POI through t-test

• Can we distinguish
between an error and no
error during the BCH
decoding?
⇒ T-test

• BCH Decoding as in
Reference
implementation:

1. Syndrome computation
2. Error locator

polynomial
3. Compute the roots of

error locator polynomial
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Decoding Oracle
2.) Template generation

• Generate a template for both classes:
I No Error (t0

m)
I Error (t1

m)
• Mean of all traces for a given class at POI
• Template generation on the target device (no dependency on y)
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Decoding Oracle
3.) Template matching

• Template matching using "sum of squared differences"
• Attack trace tattack is classified to class with the lowest SSD result:

I SSD(tattack , t0
m) < SSD(tattack , t1

m)→ No Error
I SSD(tattack , t0

m) > SSD(tattack , t1
m)→ Error
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Attack results
• Decoding oracle successfully classified on 20k traces
• Successful attack on the HQC-128 reference implementation
• Required template traces per class:

I Results shown with 500 traces
I A minimum of two traces

• Required attack traces:

max{HW(y i)} = 1 max{HW(y i)} = 2
ssupp(y) 1532 4596
supp(y) 1005 3976
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Conclusion
• Power side-channel attack on the HQC KEM
• 93.2% of possible keys of HQC-128 can be attacked

I Can be increased with additional attack traces
• Proposed solutions for "special keys":

I Linear algebra solution for HW(y [n1n2, n − n1n2]) > 0
I Information set decoding

• Practical attack results on ARM Cortex-M4 with less than 10000 traces
• Future work:

I Countermeasures
I Transfer to other HQC instances (Reed-Muller + Reed-Solomon code)
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Thank You!
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