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Abstract. Microarchitectural Data Sampling (MDS) [16, 18] enables
to observe in-flight data that has recently been loaded or stored in
shared short-time buffers on a physical CPU core. In-flight data sam-
pled from line-fill buffers (LFBs) are also known as “ZombieLoads” [16].
We present a new method that links the analysis of ZombieLoads to Dif-
ferential Power Analysis (DPA) techniques and provides an alternative
way to derive the secret key of block ciphers. This method compares
observed ZombieLoads with predicted intermediate values that occur
during cryptographic computations depending on a key hypothesis and
known data. We validate this approach using an Advanced Encryption
Standard (AES) software implementation. Further, we provide a novel
technique of cache line fingerprinting that reduces the superposition of
ZombieLoads from different cache lines in the data sets resulting from
an MDS attack. Thereby, this technique is helpful to reveal static secret
data such as AES round keys which is shown in practice on an AES
implementation.
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1 Introduction

Many attacks targeting optimization mechanisms of modern CPUs have been
published in recent years. A subset of those, Microarchitectural Data Sampling
(MDS) attacks, are applicable to the majority of Intel CPUs sold in the last
decade [5], affecting a significant number of personal computers and servers
worldwide. ZombicLoad [16] is one representative from this class. It allows an
attacker to observe data from memory lines that have recently been loaded or
stored at the time of the attack on the same physical core. An application of
this instrument to cryptographic implementations is the domino attack that
reconstructs the secret key from an OpenSSL implementation of the AES [16].
In this paper, we investigate further methods to extract secret keys from
block cipher implementations using ZombieLoad primitives. First, we present
a new differential technique by considering that ZombieLoads can also stem
from intermediate computational results of a block cipher. We recover the key
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by linking ZombieLoads with analysis techniques originating from Differential
Power Analysis (DPA): we predict intermediate results of the cryptographic
implementation and use a statistical analysis to determine the key. Because
of this, protecting the secret key, for example by transferring it as rarely as
possible or in obfuscated form, might not be sufficient to protect cryptographic
implementations from MDS leakage. Second, we provide cache line fingerprinting
as a useful tool to reliably associate ZombieLoads to their original static byte
sequence within a memory line.

This paper is structured as follows: We give an introduction into transient
execution and cache leakage, MDS attacks with focus on ZombieLoad, and DPA
in section 2. Next, we make the following contributions: In section 3, we transfer
the idea of analyzing intermediate results of a cryptographic algorithm from
DPA into the domain of MDS post-processing. We present the general analysis
procedure as well as a case study to an AES implementation. In section 4, we
further introduce an independent tool called cache line fingerprinting that makes
it easier to assign leaked bytes to their originating cache lines. We show that this
tool is suitable to leak AES round keys in an exemplary implementation.

2 Preliminaries

2.1 Transient Execution and Cache Leakage

The publication of Spectre and Meltdown [8,9] introduced a new class of side-
channel attacks that use effects of microarchitectural optimization techniques
of modern CPUs to leak data across privilege boundaries. These attacks make
use of specially crafted transient instructions, i.e., instructions that are erro-
neously executed due to false predictions or out-of-order processing. Following
this observation, many further transient execution attacks targeting different
microarchitectural structures have been published in recent years [3].

Transient execution attacks often influence microarchitectural structures like
caches in a targeted manner to encode information into them: An attacker pro-
cess allocates a so-called probe array in memory and ensures that it is not cached.
The size of the probe array is often set to 256 - p bytes, where p is the page size
in bytes, e.g., p = 4096. This array is suitable to encode the value v of a single
byte into the cache by transiently accessing index v - p. When an element of the
probe array is accessed by a transient instruction, the memory line containing
this array element is loaded into the cache and remains cached even when the
CPU detects the erroneous execution and discards all speculative results [9].

Depending on the microarchitectural implementation, some security checks
are not yet performed during transient execution. Thus, an attacker can use
transient instructions to perform unauthorized load requests to otherwise inac-
cessible memory regions and extract them using the cache side-channel [9].

2.2 Microarchitectural Data Sampling (MDS) and ZombieLoad

Microarchitectural data sampling attacks extract in-flight data of concurrent pro-
cesses, e.g., values that are loaded from or stored to memory in close temporal
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proximity to the attack. MDS attacks published to date target different microar-
chitectural structures to extract data from. They focus on store buffers [2], fill
buffers [16, 18], or structures concerned with bus snooping [4]. Further improve-
ments include targeted attacks on attacker-specified memory regions [17] and
attacks that overcome the common precodition that victim and attacker share
the same physical CPU core [14].

In this paper, we mostly build upon the findings of the ZombieLoad pub-
lication [16]. ZombieLoad allows to observe values loaded from (or stored in)
memory at the time of the attack across logical cores. It presumably leaks values
that are present in line-fill buffers (LFBs), an intermediate stage between the L1
cache and higher-level caches. LFBs are shared among all processes executed on
the same physical CPU core, including processes that are concurrently executed
on the same physical but different logical core. On vulnerable CPUs, memory
load operations are not canceled immediately when a fault (e.g., a page fault)
occurs. Instead, the load may speculatively be answered with a value from an
LFB. Until the fault is handled and the result of the load request is discarded, the
CPU may execute additional transient instructions that operate on stale values
from an LFB and leak them through a cache-based side-channel. Leaking data
may stem from concurrent user-space applications, the kernel, SGX enclaves,
hypervisors or virtual machines running on sibling cores [16].

Attack variants. There are multiple ZombieLoad variants that differ with re-
gard to how a faulting load instruction is created. In this paper, we use variants
1 and 2. Varaint 1 is closely related to the Meltdown attack, abusing transient
instructions after a page fault. Variant 2, also knwon as TSX Asynchronous
Abort (TAA), makes use of insufficient transient error handling in the transac-
tional memory implementation when a memory conflict occurs. Both variants
are well suited for attacks among user space processes on Linux systems [16].

Further ZombieLoad variants use properties of SGX, uncacheable memory
regions or page-table walks [16]. A similar approach to leak data from LFBs is
Rogue In-Flight Data Load (RIDL) [18] which uses page faults that occur due
to demand paging.

Domino Attack. The domino attack is a ZombieLoad case study to leak the
key from an AES implementation [16]. To leak a 16-byte (round) key, the key
has to be observed multiple times and extracted byte-by-byte. First, the attacker
samples bytes from varying positions in arbitrary LFB entries. To connect these
single bytes to chains that frequently appear together (and therefore are key can-
didates), so-called domino bytes are leaked in addition. A domino byte connects
two neighboring bytes to each other: it consists of four bits from the first byte
and four bits from the second byte. Domino bytes are leaked through the same
cache side-channel as previous data bytes, but in a separate ZombieLoad itera-
tion. Finally, the attacker searches the sampled data for chains of 16 consecutive
bytes that are backed by both bytes from LFB entries and domino bytes to find
AES key candidates [16].
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2.3 Differential Power Analysis and its Application to White-Box
Implementations

DPA [7,10] exploits the fact that processing an algorithm on a hardware platform
causes (noisy) physical side-channel leakage such as data-dependent power con-
sumption over time. If a cryptographic algorithm is considered, the side-channel
leakage can include information about secret cryptographic keys.

A DPA attacker samples the power consumption of a circuit over time and
thereby obtains a high number of noisy sampled data per execution of an al-
gorithm, i.e., a DPA trace. As DPA is a statistical attack, many repetitions of
algorithm execution are carried out using varying known input (or output) data
to the cryptographic implementation. For analysis, the attacker predicts the in-
termediate state of the cryptographic implementation and thereby derives the
expected power consumption in a hypothetical model dependent on known input
(or output) data and a key hypothesis using a divide-and-conquer approach. If
the model is suited and leaks exist, the predicted values show a high degree of
correlation with the measured samples for the correct key. The model is typically
applied to internal intermediate state values that occur at the beginning (or the
end) of the cryptographic computation.

Adaptations of this attack on a white-box software implemenation used Dy-
namic Binary Instrumentation (DBI) tools to record traces of memory transac-
tions that are comparable to noise-free DPA traces and can be analyzed in a
similar way [1].

3 Differential Analysis of ZombieLoads

3.1 System and Attacker Model

System Model. A victim process runs a block cipher that repeatedly encrypts
or decrypts a given input with a fixed key. The input varies periodically. We
assume that the block cipher computations are performed in software on a CPU
that is vulnerable to an MDS attack.

Attacker Model. An attacker program runs concurrently to the victim pro-
cess on the sibling core and constantly collects samples using an MDS attack,
e.g., ZombieLoad. We assume that the attacker knows the inputs or outputs
(plaintexts or ciphertexts) as well as the used block cipher. The attacker has the
capability to freely choose the byte index within the LFB entry from which the
next sample is leaked. Assuming that the LFB consists of N, bytes, the attacker
maintains N, sampling pools for each known plaintext (or ciphertext). Let N be
the number of different plaintexts (or ciphertexts), each sampling pool is indexed
with the pair (¢,7) with 0 <i < Ny and 0 < j < N.

3.2 Attack Procedure

The differential attack is divided into two phases, sampling and analysis. These
can optionally be preceded by a profiling phase.
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Fig. 1. Sampling process for differential analysis

Sampling. Figure 1 illustrates the data flow during sampling. While the victim
process executes the block cipher, the attacker collects samples from varying
byte indices ¢ and sorts each of them into the according sampling pool indexed
with the pair (,7) of LFB byte index (i) and a reference to the plaintext that
was encrypted during sampling (j). In practice, the observed samples may stem
from observable intermediate results of block cipher operations in one of N,
rounds, from the processed plaintext or ciphertext or from unrelated processes
which contribute additional noise. The sampling process has three distinctive
properties: First, a very low sampling rate, i.e., the sampling frequency is small
compared to the frequency of block ciphering operations, second, asynchronous
sampling, i.e., a synchronization with the ciphering process is hard for the at-
tacker’s process, and third, random sampling, i.e., the origin and outcome of the
next sampling process is unknown.

Analysis. In the analysis phase, a divide-and-conquer key hypothesis test simi-
lar to DPA [7,10] is executed. The attacker targets each key byte individually. For
each key byte, the attacker computes the intermediate values that are expected
to leak for each of the 256 possible values. For the correct key byte hypotheses,
the expected intermediate values appear in the corresponding sampling pools.

Profiling (optional). The exact analysis algorithm clearly depends on the
leakage pattern of the victim application and the used block cipher. The attacker
can either guess which intermediate values leak during computation or use an
identical implementation to the victim process to characterize the probability
distribution of relevant observables in the sampling pools. We refer to the latter
option as profiling. To profile an implementation, we set it up to process a fixed
known input with a fixed known key repeatedly while ZombieLoad samples are
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collected. All intermediate values that potentially occur can easily be computed
off-line or extracted from a running process using a debugger. We search the
extracted samples for the computed intermediate values. Those values that occur
in the correct sampling pools are candidates for attack vectors in the analysis
phase.

3.3 Case Study: Practical Application to an AES Implementation

To show that our attack is indeed practical, we picked a byte-oriented AES
implementation called aes-min' as a target to tailor an exemplary differential
attack. All AES functions are implemented closely to the specification [13] in C
and without optimizations in terms of side-channel resistance. aes-min is meant
to be used on embedded devices with limited resources [11] but can also be
compiled for general-purpose CPUs.

Table 1. CPUs under investigation.

CPU Microarchi- |Micro- |Environ- | TSX | AES-
tecture code ment NI
i3-2120 Sandy Bridge |0x28 Lab X X
i7-2620M Sandy Bridge |0x1a Lab X v
i5-4300M Haswell Oxic Lab X v
Xeon E3-1270v6 |Kaby Lake |0xb4 Cloud v v
i7-8650U Kaby Lake R [0x96 Lab v v

Testing Environment. We used the CPUs from Table 1 running Debian 9 and
gee 6.3.0-18 for our experiments. We distinguish between lab CPUs running an
uniform operating system image with LXDE user interface, and Cloud CPUs,
which were rented as dedicated machines from a hosting provider running a pre-
installed Debian 9 image without graphical user interface. Relevant mitigations
including Kernel Address Space Layout Randomization (KASLR), Kernel Page-
Table Isolation (KPTI), or clearing vulnerable CPU buffers were disabled on all
systems?. We used a signal handler to handle the fault triggered by ZombieLoad
attack variant 1 architecturally, as TSX is not supported by some of our systems.

Profiling aes-min. We executed the profiling step on the i7-2620M CPU using
ZombieLoad variant 1. We computed the AES state after each operation off-line
and used these values to assign the recorded samples to their originating state
with high probability. Figure 2 shows that we observed leakage from the AES
state after every operation in every round, as well as plaintext (0/input) and
ciphertext (10/output). About 59 % of the samples could not be assigned to any
of the AES states and are therefore considered noise. There are two states that

! https://github.com/cmcqueen /aes-min/tree/728¢156091 /
2 Kernel parameters: nokaslr nopti mds=off tsx_async_abort=off.
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Fig. 2. Empirical assignment of samples to AES operations for aes-min on i7-2620M.
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Fig. 3. Empirical distribution of samples at byte position 2 for aes-min on i7-2620M.

appear to leak more samples than the other. These states contain the byte value
00, which is generally overrepresented because it is the fallback value for failed
ZombieLoad attempts.

Figure 3 shows all the byte values that occurred during an aes-min encryption
for a specific byte position. We observed that noise is limited to seven values on
average for most byte positions. Many of the 256 possible values do not appear
at all. The red line in Figure 3 shows the expectancy value for the assumption
that all recorded samples distributed equally over the 256 possible values. Most
noise values stay below the red line while bytes that occur in intermediate states
stay above. This value could therefore be used as a threshold to filter out noise.

Analysis Algorithm for aes-min. Our analysis algorithm in Figure 4 con-
ducts the key hypothesis test: the attack targets each byte of the key on its
own (line 2) and also considers the samples recorded for each plaintext inde-
pendently (line 3). All further steps are conducted only with those samples that
match these properties, i.e., which were sorted into the same sampling pool.



8 T. Schliiter and K. Lemke-Rust

Require: p: Array containing the plaintexts used during the attack.
SP: Matrix of sampling pools after measurement.

Ensure: k*: Array containing the best key hypothesis for each index.

1:. C=0

2: for idz =0 to 15 do

3:  for pt =0 to length(p) — 1 do

4 for hyp = 0 to 255 do

5 afterARK = plpt]lidz] & hyp

6: afterSB = SubBytes(afterARK)

7 if afterARK € SP[idz] [pt] and afterSB € SP [idz] [pt] then
8: Cidz,hyp += 1

9: end if

10: end for

11:  end for

12: kige = argmax Cidz, hyp
hyp

13: end for

Fig. 4. Differential analysis algorithm for aes-min (pseudo code)

We compute the first steps of an AES encryption for a known plaintext
byte. Remember that the AES encryption starts with AddRoundKey followed by
a SubBytes operation [13]. Since the correct key byte is unknown, we simply
perform these calculations for all 256 possible values (line 4-6). For the correct
key byte hypothesis, we expect that both intermediate results appear at least
once in the curent sampling pool (line 7). If this is the case, we record the
observation in a result matrix C = (Cigz hyp), 0 < 2dx < 16,0 < hyp < 256. C
is initialized to zero (line 1). Each element c¢;qy hyp represents a counter that is
increased when all expected intermediate values for key hypothesis hyp at index
idr occur in the current sampling pool (line 8). The underlying idea for key
recovery is that the counters for the correct key hypotheses increase faster than
for any other hypotheses the more different plaintexts are analyzed. If leakage
exists, the most probable 16-byte key hypothesis can finally be extracted from
C: the column index hyp of the maximum value in each row idx specifies the
most probable key byte at index idx (line 12).

Success Rates for aes-min. Figure 2 shows that we identified 41 intermediate
AES observables that appear in ZombieLoads during aes-min encryptions. We
simplify that each observable AES intermediate result appears in the samples
and additional noise is neglected. Considerng the algorithm of Figure 4, false pos-
itives for wrong key hypotheses can be produced by AddRoundKey and SubBytes
operations in the subsequent nine AES rounds, any pair of the 21 remaining ob-
servable AES operations (plaintext byte, ten ShiftRows, nine MixColumns and
one AddRoundKey which yields the ciphertext byte), or combinations thereof.
They are sieved out by considering multiple plaintexts.

We performed 200,000 noise-free simulations of this leakage pattern for a
single byte and received approximately 13.01 competing key hypotheses on av-
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erage after the first plaintext, including the correct one. We further simulated
200,000 noise-free attacks on the full AES key to determine how many plain-
texts are required to find it. We consider the key found as soon as the most
probable key byte hypothesis matches the correct key byte for all 16 positions.
Using the outputs of AddRoundKey and SubBytes as shown in Figure 4, line 7,
two plaintexts were enough to leak the full key in very rare cases (0.02 %). After
three plaintexts, 69 % of the attacks were successful, 98 % succeeded after four
plaintexts and eight plaintexts were required at most. If we only used the value
after AddRoundKey or SubBytes in line 7, three plaintexts would be sufficient
for very rare cases (0.03 %), 25 % of the attacks succeeded after four plaintexts,
83 % after five, 97 % after six, and all after considering eleven plaintexts.

Table 2. Experimental results for the differential attack on different CPUs (n = 10
repetitions).

CPU Vari- |No. of [Samples/ [Avg. du- [Avg. key |[Full key
ant |[samples |plaintext |ration (s) |bytes recoveries

13-2120 1 30,000 500 3.4 14.7] 1/10 (10%)
100,000 1,000 10.0 16.0/10/10 (100%)
. 60,000 8,000 6.2 14.9] 1/10 (10%)
(1)|i7-2620M 1 200,000 4,000 53.7 16.0{10/10 (100%)
. 20,000 1,000 8.0 13.2] 1/10 (10%)
5-4300M 1 200,000 4,000 65.4 16.0/10/10 (100%)
2) E3-1270v6| 1 3,000 500 732.7 0| 0/10  (0%)
i7-8650U 1 3,000 500 1,033.4 0f 0/10  (0%)
E3-1270v6 | 2 800,000 300 405.1 11.7) 0/10  (0%)
)| 600,000 1,000 122.3 14.8] 4/10 (40%)
17-8650U 2 800,000 300 197.2 15.8] 8/10 (80%)

Experimental Results for aes-min. We implemented® a wrapper program
around aes-min that takes a 16 byte plaintext, which is repeatedly encrypted
with a hard coded key until the process is shut down. It performs approx. 298,000
encryptions per second on the 9-year-old i3-2120 and approx. 528,000 on the most
recent of our CPUs (i7-8650U). This victim process is started by the attacker who
also chooses the plaintext. ZombieLoad samples are collected while the process
is running and stored in the corresponding sampling pools. The plaintext is
changed in predefined intervals by stopping the victim process and starting it
again with a different plaintext. While this approach technically implements a
chosen-plaintext scenario, it should be noted that it is not strictly necessary
for an attacker to choose the plaintext freely. The attack is also applicable in a
known-plaintext scenario where each plaintext is repeatedly encrypted during a
time frame known to the attacker. After collecting a sufficient number of samples,
we stop the victim program and execute the analysis algorithm from Figure 4.

3 The source code of all implementations used in this paper can be found at https:
//github.com /tillschlueter /zombieload-on-block-ciphers.
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We executed the attack based on ZombieLoad variant 1 first. We set the
number of samples to collect to 3,000, 10,000, 20,000, 30,000, 60,000, 100,000, or
200,000, while changing the plaintext every 500, 1,000, 4,000, or 8,000 samples.
For each parameter combination, we repeated the attack 10 times. A subset of
the results is listed in Table 2, section (1). For each CPU, we list results for two
parameter sets: first, for the smallest number of samples and plaintexts required
to recover the full AES key in 1 out of 10 tries in our experiments, and second,
for the smallest parameters required to recover the key in 10 out of 10 tries. The
average attack duration for the first parameter set is between 3.4 to 8.0 seconds,
while it varies between 10.0 and 65.4 seconds for the second parameter set. The
number of plaintexts used ranges from 8 to 100.

The attack was unsuccessful for the Kaby Lake CPUs in our test field, as
shown in section (2) of Table 2: We observed many unrelated samples with value
0x00 at those positions where we expected AES intermediates. Filtering out these
values led to very low average sampling rates (< 10 B/s) in this attack scenario,
and the resulting samples were still unrelated to the targeted intermediate values.
Because both affected CPUs support TSX, we tried using ZombielLoad variant 2
instead. To overcome low sampling rates with variant 2, we allocated the probe
array on a single 2 MB page. This allows us to load the address translation
into the Translation Lookaside Buffer (TLB) in advance, ensuring that no costly
page table walk has to be performed during transient execution. With variant
2, we received samples containing the targeted intermediate values, as well as
many unrelated samples, leading to many false positives in the analysis phase.
To counter this effect, we collected more samples (200,000, 400,000, 600,000,
or 800,000) and changed plaintexts more frequently (after 300, 500, or 1,000
samples). In this way we could find up to 11.7 key bytes on average on the Xeon
E3-1270v6 CPU, while full key recovery was possible on the i7-8650U (see Table 2
(3)). For the latter CPU, we list the parameter set with the smallest number of
samples and plaintexts required for full key recovery and the parameter set that
led to the most successful attacks in our experimental setup (8/10 tries).

We conclude that type and quantity of leakage strongly depends on the spe-
cific environment and the microarchitecture, and that implementations that leak
fewer values in one setting may behave differently in others.

4 Cache Line Fingerprinting

In this section, we propose a new fingerprinting technique to extract constant
chains of consecutive bytes (like cryptographic keys) from frequently observed
cache lines. As Wampler et al. [19] demonstrated in a Spectre scenario, it is
sometimes possible to access the probe array multiple times from within a single
transient execution window. This approach also works in the context of MDS
attacks [12,15]. Instead of using the additional capacity to extract multiple bytes
from the same LFB entry, we propose to transfer an additional byte that identi-
fies the LFB entry from which the data value was sampled with high probability.
We call this byte a cache line fingerprint.
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4.1 Attack Procedure
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Fig. 5. Storage of leaked bytes in pools. For each byte, the appropriate pool is selected
based on the fingerprint of the originating LFB entry.

An overview of the cache line fingerprinting method is given in Figure 5. Dur-
ing transient execution, the probe array is accessed twice. To prevent collisions
of these accesses, the length of the probe array is doubled to 4096 - 512 bytes.
As in previous attacks, the first access is used to encode a data byte from the
LFB into the first half of the probe array. Then we make use of the fact that the
whole LFB entry is accessible during transient execution and generate a finger-
print using a function that maps from a subset of the LFB entry content to a
single byte. We achieved good results with a fingerprint function that computes
the logical XOR operation on the first eight bytes. This function covers a suffi-
ciently large subset of the LFB entry to identify it and is yet fast to compute.
The fingerprint byte is encoded into the second half of the probe array. Finally,
the attacker program iterates over the extended probe array and recovers a pair
(data, fp) containing a data byte and a fingerprint byte.

Again, we store the recovered bytes in multiple pools as shown in Figure 5.
We set up one pool for each possible fingerprint value, i.e., 256 pools for an 8-bit
fingerprint. Each data byte data is stored in the pool that is indexed with the
fingerprint value fp. Within the pool, data bytes are further separated by their
position in the LFB entry.
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When the same cache line is observed again in a later ZombieLoad iteration,
the generated fingerprint will be identical. This property allows to assign bytes
from several ZombieLoad iterations to the same fingerprint pool and therefore
to the same cache line — apart from collisions, i.e., when two or more cache
lines are mapped to the same fingerprint. If necessary, collisions could be further
reduced by changing the fingerprint function or determining expected probability
distributions for the samples in a fingerprint pool.

4.2 Practical Application to an AES Implementation

We mount a cache line fingerprinting attack on the calculation of the AES key
schedule in OpenSSL 1.1.01 to extract two round keys and compute the initial
key. This method enables us to automatically identify AES (round) keys in the
leaked sample set and even works if the initial key is subject to increased noise
while some round keys are less affected.

A victim process uses the EVP_* functions in OpenSSL’s libcrypto to repeat-
edly compute the AES key schedule and encrypt a message while an attacker
program concurrently performs ZombieLoads with cache line fingerprinting on
a sibling core. For AES128, 11 round keys (ko, k1, ..., k10) are computed. The
first round key kg is equal to the initial key.

The attack is divided into sample collection and analysis phase. During sam-
ple collection, the attacker program collects samples continuously and sorts them
into pools based on their fingerprints. After a predefined number of samples was
collected, the analysis phase begins. The attacker checks for each pool whether
it contains a continuous chain of 16 bytes starting at a 16 byte offset. Each of
these chains can be seen as an AES round key candidate. If multiple colliding
byte values were recorded for any index within a pool, the attacker may choose
the value based on the frequency of occurrence.

If the attack was successful, at least one round key is among the detected
chains. For each chain, the attacker should first check whether the chain itself is
the AES key kq. Otherwise, the inverted key schedule yields 10 key candidates
per chain, including kg if the observed chain is a valid round key. If two or more
round keys leaked, the attacker can also find the AES key k¢ without knowing
any plaintext-ciphertext pair for verification. Let k., and k., be two different
AES round keys among the extracted chains. We pick any of the recorded chains
and assume it is round key k,,. We calculate the set of potential previous round
keys using the inverted AES key schedule. If k., is among the calculated round
keys, we know we probably picked a correct round key and can calculate k.

We executed the attack on the CPUs in our testing environment that sup-
port AES-NI (see Table 1). We noticed that the transient execution window
of ZombieLoad variant 2 is too small to compute even the simple XOR-based
fingerprint, so we confined to variant 1 in all cases.

The attack was successful on both CPUs listed in section (1) of Table 3.
We tried sample sizes from 60,000 to 120,000 samples and observed the highest
success probability after recording 100,000 samples on both devices. The attack
is still susceptible to noise, which explains the relatively low rate of successful
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Table 3. Experimental results for the cache line fingerprinting attack on different
CPUs (n = 10 repetitions).

[CPU [No. of samples [Avg. duration (s) [Full key recoveries |
(1) [77-2620M 100,000 2.1 9/10 (90%)
i5-4300M 100,000 11.3 3/10 (30%)
(2 [E31270v6 100,000 10.9 0/10 (0%)
i7-8650U 100,000 12.1 0/10  (0%)

full key recoveries: it fails as soon as one byte of a round key is misdetected.
Again, we noticed strong differences in leakage patterns and quantity depending
on the microarchitecture: On both CPUs listed in section (2) of Table 3, the
attack was infeasible due to too much noise from parallel activity.

4.3 Discussion

Comparison to the Domino Attack. In the domino attack [16], values from
all observed cache lines overlap in the entire sample set; the only distinctive
property of recorded samples is the index inside the LFB entry. The domino
attack deals with a set of frequency distributions where each distribution reflects
all values observed at a given index. All samples in our improved attack have two
distinctive properties: index and fingerprint. This leads to 256 sets of frequency
distributions, one set per fingerprint pool. In each set, data from different cache
lines only superimpose where the fingerprint collides. Another advantage of cache
line fingerprinting is the direct association of the fingerprint with the data value,
while the domino attack samples data bytes and domino bytes at different points
in time and with no inherent connection between them. It is noted that cache line
fingerprinting shares the limitation with the domino attack that only constant
values that appear repeatedly can be extracted from cache lines. Clearly, if the
first eight bytes of a cache line change, the fingerprint likely changes as well.

Comparison to RIDL’s Mask-Sub-Rotate. Van Schaik et al. [18] propose
Mask-Sub-Rotate (MSR), a technique that may look similar to ours at first sight.
Both approaches access the full cache line during transient execution. While
MSR leaks sequences identified by some sub-sequence, our technique extracts all
frequent constant sequences, without knowing any identifying marker sequence.
Furthermore, we leak two bytes per iteration (value and fingerprint), while MSR,
leaks either a single byte value (if the cache line begins with the identifying
sequence) or nothing (otherwise).

5 Mitigations

Both the differential attack as well as cache line fingerprinting require that Zom-
bieLoads can be collected. For general countermeasures to prevent ZombieLoad
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leakage we refer to [16]. Considering that disabling both HyperThreading and
TSX is necessary to fully mitigate ZombieLoad on vulnerable CPUs [6], we as-
sume that mitigations are still incomplete on many real-world systems.

As a software mitigation, the presented differential attack can be prevented
similarly to the secret sharing approach in [16] by masking the entire crypto-
graphic implementation [10]. Masking flattens the statistical distributions in the
sampling pools towards a uniform distribution which thereby prevents the de-
scribed leakage of the differential attack. Second-order attacks are assessed to be
difficult as the leakage frequency of ZombieLoads is much smaller than the exe-
cution frequency of AES, however, it should be ensured that mask and masked
data are never stored in the same cache line to make it harder for an attacker
to target the mask. A limited countermeasure to cache line fingerprinting could
be to only mask the key storage. As cache line fingerprinting depends on static
cache data, a regularly refreshed masking of the key storage, e.g., after a certain
number of AES executions, counteracts this attack assumption.

6 Conclusion

In this paper, we showed that sampled intermediate results of cryptographic im-
plementations can be used for key recovery in an MDS scenario. This differential
attack can succeed with very few known plaintexts or ciphertexts and does not
require the key bytes to be directly observable via MDS. Exploitable leakage
was observed with the implementation aes-min and the AES key was success-
fully recovered in less than four seconds on an i3-2120 CPU. While the actual
leakage pattern strongly depends on the specific implementation, environment,
and CPU, we want to raise awareness that intermediate values can be used to
recover secret data in MDS contexts as well and should be considered as a poten-
tial threat. This is especially true for algorithms other than AES without special
hardware-support which rely even more on software-based computations that are
potentially susceptible to leakage. As second main contribution, we proposed the
use of cache line fingerprinting in order to pin ZombieLoad samples to a cache
line with high probability. This allows to extract constant byte sequences more
efficiently for key recovery.
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